Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.) Q(x)=x2-7x Ta có: \(x^2-7x=0\) \(\Leftrightarrow x\left(x-7\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\) Vậy nghiệm của đa thức Q\(\left(x\right)\) là 0 và 7
b.) x2+6x-7 Ta có: \(x^2+6x+7=\) 0 \(\Rightarrow x^2+7x-x+7=0\) \(\Rightarrow x\left(x+7\right)-\left(x+7\right)=0\) \(\Rightarrow\left(x-1\right)\left(x+7\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) Vậy nghiệm của đa thức là 1 và -7
a) Q(x)= \(x^2-7x=x\left(x-7\right)\\ =>\left\{{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
=> Nghiệm của đa thức Q(x) là x=0;x-7
\(D=\frac{9x^2+6x+1}{3x+1}\left(x\ne\frac{-1}{3}\right)\)
\(\Leftrightarrow D=\frac{\left(3x+1\right)^2}{3x+1}=3x+1\)
thay x=-4(tm) vào biểu thức D ta có: D=3.(-4)+1=-12+1=-11
vậy D=-11 với x=-4
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+3x^2-2x-2=0\)
\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)
\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)
Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)
b) Đặt \(G_{\left(x\right)}=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(S=\left\{-\frac{1}{3}\right\}\)
c) Đặt \(A_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2-4=0\)
\(\Leftrightarrow2x^2=4\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)
d) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)
e) Đặt P=0
\(\Leftrightarrow3x^2+4x^2+6x+3=0\)
\(\Leftrightarrow7x^2+6x+3=0\)
\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)
mà 7>0
nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)
\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)
Vậy: S=∅
Ta có: \(Q\left(x\right)=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge2010\forall x\)
Vậy đa thức Q(x) vô nghiệm.
\(Q\left(x\right)=\left(x^2-2x.3+3^2\right)+2019-9=0\)
\(Q\left(x\right)=\left(x+3\right)^2+2010=0\)
Vì \(Q\left(x\right)=\left(x+3\right)^2\ge0\forall x\)
\(Q\left(x\right)\ge2010>0\)
Vậy...