K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Vì AB=AC nên A nằm giữa B và C

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

15 tháng 3 2017

K

Hình hơi xấu hì hì! tự viết GT KL nha!

Cm:

a) \(\Delta ABC\)cân tại A (gt)

=> AB=AC

=>AC=4cm (vì AB=4cm(gt))

Vậy AC=4cm.

b) \(\Delta ABC\)cân tại A (gt)

=>\(\widehat{B}=\widehat{C}\)

\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)

\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

=> \(\Delta ABC\)đều.

c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

AB=AC

BM=CM

=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)

                               (đpcm)

d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)

=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)

=>\(\widehat{AMB}=\widehat{AMC}=90^0\)

=> \(AM⊥BC\)(Đpcm)

e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:

\(\widehat{BHM}=\widehat{CKM}=90^0\)

BM=CM

\(\widehat{B}=\widehat{C}\)

=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)

=>MH=MK(2 cạnh t/ứ)

              (đpcm)

26 tháng 2 2022

a, Xét tam giác ABM và tam giác ACM ta có 

AB = AC 

AM _ chung 

BM = CM 

Vậy tam giác ABM = tam giác ACM (c.c.c)

b, đề sai rồi 

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBHM=ΔCKM

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK

a: 

loading...

GT

ΔABC cân tại A

M là trung điểm của BC

MK=MA

MH\(\perp\)AB; MK\(\perp\)AC

H\(\in\)AB; K\(\in\)AC

KL

b: ΔABM=ΔACM

c: ΔABM=ΔKCM

d: AB//CK

e: MH=MK

b: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

c: Xét ΔMAB và ΔMKC có

MA=MK

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMKC

d: Ta có: ΔMAB=ΔMKC

=>\(\widehat{MAB}=\widehat{MKC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//KC

e: ΔAMB=ΔAMC

=>\(\widehat{MAB}=\widehat{MAC}\)

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

=>MH=MK

=>ΔMHK cân tại M

24 tháng 12 2023

loading... a) Do AM là tia phân giác của ∠BAC (gt)

⇒ ∠BAM = ∠CAM

Xét ∆ABM và ∆ACM có:

AB = AC (gt)

∠BAM = ∠CAM (cmt)

AM là cạnh chung

⇒ ∆ABM = ∆ACM (c-g-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ BM = CM (hai cạnh tương ứng)

⇒ M là trung điểm của BC

Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

c) Do ∠BAM = ∠CAM (cmt)

⇒ ∠EAM = ∠FAM

Xét hai tam giác vuông: ∆AME và ∆AMF có:

AM là cạnh chung

∠EAM = ∠FAM (cmt)

⇒ ∆AME = ∆AMF (cạnh huyền góc nhọn)

⇒ ME = MF (hai cạnh tương ứng)

24 tháng 12 2023

a,
Xét tam giác ABC có:
+ AB = AC (giả thuyết)
+ Góc CAM = MAB (AM là phân giác góc BAC)
+ AM chung
⇒ 2 tam giác bằng nhau (cgc) (đpcm)

b,
Ta có:
+ Tam giác AMC = Tam giác ABM (theo câu a)
⇒ CM = MB (2 cạnh tương ứng) (1)
⇒ M là trung điểm BC (đpcm)
+ Mà AM là tia phân giác góc CAB (2)
+ Góc AMC = Góc AMB (3)
Từ (1), (2), (3).
⇒ AM ⊥ BC (t/c) (đpcm)

c,
Ta có:
Tam giác ACM = Tam giác ABM (theo câu A)
⇒ Góc ACM = Góc ABM (2 góc tương ứng)
Ta có:
+ ME ⊥ AB (giả thuyết)
⇒ Tam giác MEB vuông tại E
+ MF ⊥ AC (giả thuyết)
⇒ Tam giác CFM vuông tại F
Xét tam giác CFM vuông tại F và tam giác MEB vuông tại E có:
+ Góc ACM bằng góc ABM (chứng minh trên)
+ MC = MB (theo câu b)
⇒ Hai tam giác CFM = MEB (cạnh huyền góc nhọn)
⇒ ME = MF (hai cạnh tương ứng) (đpcm)

24 tháng 12 2023

Cho △ABC có AB = AC, AM là phân giác của ∠BAC (M ∈ BC):

a, Chứng minh △ABM = △ACM.

b, Chứng minh M là trung điểm của BC và AM ⊥ BC.

c, Kẻ MF ⊥ AB (F ∈ AB) và ME ⊥ AC (E ∈ AC). Chứng minh EF // BC.

Giải:

a,

- Xét 2 △ABM và △ACM, có:

     AB = AC (theo giả thiết)

     ∠CAM = ∠BAM (AM là phân giác của ∠BAC)

     AM_cạnh chung

=> △ABM = △ACM (c.g.c)

b,

- Có △ABM = △ACM (chứng minh trên)

=> MC = MB (2 cạnh tương ứng)

=> M là trung điểm của BC

=> ∠AMC = ∠AMB (2 góc tương ứng)

     mà 2 ∠AMC và ∠AMB kề bù

=> ∠AMC = ∠AMB = \(\dfrac{180^o}{2}\) = 90o

<=> AM ⊥ BC

c,

- Xét 2 △AEM và △AFM, có:

     ∠AEM = ∠AFM = 90o

     AM_cạnh chung

     ∠EAM = ∠FAM (AM là phân giác của ∠EAF)

=> △AEM = △AFM (cạnh huyền - góc nhọn)

=> AE = AF (2 cạnh tương ứng)

<=> △AEF cân tại A 

=> ∠AEF = \(\dfrac{180^o-\text{∠}EAF}{2}\) (số đo của một góc ở đáy trong △AEF cân tại A) (1)

Có △ABC cân tại A (AB = AC)

=> ∠ACB = \(\dfrac{180^o-\text{∠}BAC}{2}\) (số đo của một góc ở đáy trong ΔABC cân tại A) (2)

Từ (1) và (2) suy ra ∠AEF = ∠ACB

     mà ∠AEF và ∠ACB ở vị trí đồng vị

=> EF//BC

3 tháng 3 2017

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!