Cho A = 550 - 548 + 546 - 544 +...+ 56 - 54 + 52 +1
a, Tính A
b,Tìm n biết 26 . A +1 = 5n
c,Tìm số dư của A khi chia cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(5^2A=5^{52}-5^{50}+...+5^4-5^2\)
\(\Rightarrow25A+A=5^{52}-1\)\(\Rightarrow A=\dfrac{5^{52}-1}{26}\)
b, Không thấy n :vvv
c, Ta có : \(A=24\left(5^{48}+...+1\right)\)
\(=4.6.\left(5^{48}+...+1\right)\)
\(=4.6\left(5^{48}+...\right)+24\)
\(=4.5^2\left(5^{46}.6+...\right)+24=100\left(5^{46}.6+...\right)+24\)
Vậy số dư khi chia A cho 100 là 24 .
A = 550 - 548 + 546- 544+....+56 - 54 + 52 - 1
A \(\times\) 22 = 552 - 550 + 548 - 546+ 544-.....-56 +54 - 52
A \(\times\) 4 + A = 552 - 1
5A = 552 - 1
A = ( 552 - 1) : 5
A = 551 - \(\dfrac{1}{5}\)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Mình nhầm.
Ta có: 546:a(dư 19)
=>546-19 chia hết cho a
=>527 chia hết cho a
=>a=Ư(527)=(1,13,31,527)
Vì a>19
=>a=31,527
Vì thương khác 1
=>a khác 527:1=527
=>a=31
Vậy a=31
Gọi thương là b (b \(\in\) N* ; b > 1)
Ta có : 546 : a = b dư 19
=> 546 = a . b + 19
=> a . b = 527
Ta thấy 527 = 17 . 31 = 31 . 17 = 527 . 1 = 1 . 527
Vì b > 1 nên (a;b) = (17;31) ; (31;17) ; (527;1)
Vậy a \(\in\) {17; 31; 517}
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
a, hỏi thằng đặt ra đề
b,mk ko biết nhân chia cộng trừ
c,A chia ko dư (mk đoán thế vì mk ko bt chia)
HOK TỐT NHA ~~^_^
Ko rảnh, mai thi rùi