chứng minh rằng
\(2n+\frac{11....1}{nso1}chia\)hết cho 3
giải chi tiết
thưởng 1 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Quy đồng: 32/64 - 16/64 + 8/64 - 2/64 - 1/64 = 21/64
So sánh 21/64 và 1/3:
Quy đồng 2 phân số trên thành: 63/192 và 64/192
Vì 63/192 < 64/192 nên 21/64 < 1/3
=> 1/2 - 1/4 + 1/8 - 1/16 +1/32 -1/64 < 1/3
Lại thêm bài toán nâng cao đó, Hoàng Việt Tân có biết bài này không?
\(A=3.\left(3^4\right)^{10}+2\)
Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5
\(B=2.\left(2^4\right)^n+3\)
Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5
Trường hợp còn lại là tương tự
Với n=1 => 3.1+1 chia hết cho 11-2.1
=> 4 chia hết cho 9
-> sai