Cho đường tròn tâm O đường kính AC. Trên đường tròn (O) lấy điểm B (B khác A và C). Trên tia AB lấy điểm D sao cho AD=3AB. Đường thẳng vuông góc với DC tại D cắt tiếp tuyến Ax của (O) tại E. Gọi F là giao điểm thứ hai của DC với đường tròn (O), gọi H là giao điểm của BC và AF. Chứng minh rằng:
a) HB.HC=HA=HF
b) Tam giác BED cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E
Goi M là chân đường vuông góc từ E xuống BD
ΔABC∼ΔEMA(g.g)⇒ABEM=BCMA (1)
ΔBCD∼ΔMDE(g.g)⇒BCMD=BDME (2)
Vì AD=3AB suy ra BD=2AB ⇒BDME=2.ABME (3)
Từ (1),(2),(3) suy ra BCMD=2.BCMA => MA=2.MD => AD=3.MD
Lại có AD=3.AB => AD=3.MB => MB=MD
Tam giác BED có EM vừa là trung tuyến vừa là đường cao => Cân tại E (ĐPCM)
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
lol
@@Nk>\(\uparrow\)@