PTĐTTNT:
a) mx2 - 4mx + 4m - nx2 + 4nx - 4n
b) 3x2 + 48 + 24x - 12y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-4mx+4m\right)-\left(nx^2-4nx+4n\right)\)
\(=m\left(x^2-4x+4\right)-n\left(x^2-4x+4\right)\)
\(=\left(m-n\right)\left(x^2-4x+4\right)\)
\(=\left(m-n\right)\left(x-2\right)^2\)
\(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=x^2\left(m-n\right)+4x\left(n-m\right)+4\left(m-n\right)\)
\(=x^2\left(m-n\right)-4x\left(m-n\right)+4\left(m-n\right)\)
\(=\left(x^2-4x+4\right)\left(m-n\right)\)
\(=\left(x-2\right)^2\left(m-n\right)\)
Ta có :
\(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-4mx+4m\right)-\left(nx^2-4nx+4n\right)\)
\(=m\left(x^2-4x+4\right)-n\left(x^2-4x+4\right)\)
\(=m\left(x-2\right)^2-n\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(m-n\right)\)
a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow\left(2m+3\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=-3m-2\)
\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)
\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)
\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)
\(\Leftrightarrow24m^2+2m-1+75m-50=0\)
\(\Leftrightarrow24m^2+77m-51=0\)
Đến đây bạn tự làm nhé
b. m+n+p=2019
mx2+nx2+px2=2019
(m+n+p) x2=2019
(m+n+p)=2019:2
(m+n+p)=1009,5
ta có:
a, m x 2 + n x 2 + p x 2
= 2 x ( m + n + p )
Với m = 2006 ; n = 2007 ; p = 2008 thì:
2 x ( m + n + p )
= 2 x ( 2006 + 2007 + 2008 )
= 2 x 6021
= 12042
b, m x 2 + n x 2 + p x 2
= 2 x ( m + n + p )
Vì m + n + p = 2009 nên:
2 x ( m + n + p )
= 2 x 2009
= 4018
a) \(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-nx^2\right)-\left(4mx-4nx\right)+\left(4m-4n\right)\)
\(=x^2\left(m-n\right)-4x\left(m-n\right)+4\left(m-n\right)\)
\(=\left(m-n\right)\left(x^2-4x+4\right)\)
\(=\left(m-n\right)\left(x-2\right)^2\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+8x+16-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x+4-2y\right)\left(x+4+2y\right)\)
a) \(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-nx^2\right)-\left(4mx+4nx\right)+\left(4m-4n\right)\)
\(=x^2\left(m-n\right)-4x\left(m-n\right)+4\left(m-n\right)\)
\(=\left(m-n\right).\left(x^2-4x+4\right)\)
\(=\left(m-n\right).\left(x-2\right)^2\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x^2+8x+16\right)-\left(2y\right)^2\right]\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x+4-2y\right).\left(x+4+2y\right)\)