K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

*Rút gọn phân thức :

\(\left(\frac{x-3}{x+1}-\frac{x+2}{x-1}+\frac{8x}{x^2-1}\right):\frac{3}{x^2-1}\)=

= \(\left[\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8x}{x^2-1}\right]:\frac{3}{x^2-1}\)

= \(\left(\frac{x^2-x-3x+3}{x^2-1}-\frac{x^2+x+2x+2}{x^2-1}+\frac{8x}{x^2-1}\right):\frac{3}{x^2-1}\)

= \(\left(\frac{x^2-4x+3}{x^2-1}-\frac{x^2+3x+2}{x^2-1}+\frac{8x}{x^2-1}\right)\)\(:\frac{3}{x^2-1}\)

= \(\left(\frac{x^2-4x+3-x^2-3x-2+8x}{x^2-1}\right):\frac{3}{x^2-1}\)

= \(\frac{x+1}{x^2-1}:\frac{3}{x^2-1}\)

= \(\frac{x+1}{x^2-1}\cdot\frac{x^2-1}{3}\)

= \(\frac{\left(x+1\right)\left(x^2-1\right)}{\left(x^2-1\right).3}\)

= \(\frac{x+1}{3}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)

12 tháng 12 2021

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

8 tháng 12 2021

a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)

1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)

\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)

\(=x+1\)

ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)

2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)

mà \(x^2+x+1⋮x^2+x+1\)

nên \(-1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)

\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

8 tháng 12 2021

a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))

\(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)

\(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)

Thay x = -1 vào B, ta có:

\(\dfrac{-1+1}{-1-1}=0\)

c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên

<=> 2\(⋮x-1\)

<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)

x-1-2-112
x-1023
 CLCC

KL: x \(\in\left\{-1;2;3\right\}\)

 

29 tháng 11 2021

undefinedundefinedundefined

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)