K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b,Gọi I là giao điểm của BC và ED

Xét ∆AED và ∆ABC có:

+AB=AD(gt)

+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)

+AC=AE(gt)

\(\Rightarrow\)∆AED=∆ABC(ch-cgv)

\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)

Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)

\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)

\(\Rightarrow\)∆BIE vuông tại I

\(\Rightarrow DE\perp BC\)

1 tháng 12 2016

 

ABCDEN

\(a.\)

Xét \(\Delta ADE\)\(\Delta ABC\) có :

\(AD=AB\) \(\left(gt\right)\)

\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)

\(AE=AC\) \(\left(gt\right)\)

Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)

\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )

\(b.\)

Ta có :

\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )

\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )

\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)

Hay \(DE\perp BC\)

Vậy \(DE\perp BC\)

 

 

12 tháng 12 2016

còn phần c

21 tháng 2 2021

Đáp án:

a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)

=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)

=> BC2=82+62=100BC2=82+62=100

=> BC=10BC=10cm

b) Vì AB = AD (gt)

mà A  BD (gt)

=> A trung điểm BD (ĐN trung điểm)

=> CA trung tuyến BD (ĐN trung tuyến)

lại có: CA  BD (AB  AC do Aˆ=90oA^=90o)

=> ΔΔCBD cân tại C (dhnb)

=> BC = CD (ĐN ΔΔ cân)

và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)

=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)

Xét ΔΔBEC và ΔΔDEC có:

BC = CD (cmt)

C1ˆ=C2ˆC1^=C2^ (cmt)

EC: cạnh chung

=> ΔΔBEC = ΔΔDEC (c.g.c)

c) Vì CE là trung tuyến của ΔΔBCD (cmt)

mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

1,3: Xet ΔADE và ΔACB có

AD/AC=AE/AC

góc DAE=góc CAB

=>ΔADE đồng dạng vói ΔACB

=>góc ADE=góc ACB

=>DE//BC

2: DE/CB=AD/AC=3/10

Bài 12: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AC chung

AB=AD(gt)

Do đó: ΔABC=ΔADC(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔEAB vuông tại A và ΔEAD vuông tại A có 

EA chung

AB=AD(gt)

Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)

Suy ra: EB=ED(hai cạnh tương ứng)

Xét ΔCEB và ΔCED có

CE chung

CB=CD(cmt)

EB=ED(cmt)

Do đó: ΔCEB=ΔCED(c-c-c)

21 tháng 2 2021

MF vuông góc vs AB chứ