\(5.5^{2x+1}=\left(5^2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)
\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)
\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)
\(a,\left(x-1,2\right)^2=4\)
\(\Rightarrow x-1,2=2\)
\(\Rightarrow x=3,2\)
\(b,\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\Rightarrow x=-6\)
\(c,\left(x-5\right)^3=2^6\)
\(\Rightarrow\left(x-5\right)^3=4^3\)
\(\Rightarrow x-5=4\Rightarrow x=9\)
\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left(2x-15\right)^2-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3=0\) hoặc \(\left(2x-15\right)^2-1=0\)
+)TH1: \(\left(2x-15\right)^3=0\)
\(\Rightarrow2x-15=0\)
\(\Rightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
+)TH2: \(\left(2x-15\right)^2-1=0\)
\(\Rightarrow\left(2x-15\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=1\\2x-15=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=16\\2x=14\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
Vậy \(x=\frac{15}{2}\) hoặc \(x=8\) hoặc \(x=7\)
a) \(2^x-17=15\Rightarrow2^x=32\)
Mà \(2^5=32\Rightarrow x=5\)
Vậy x = 5
b)\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
Vậy x = 3
c)\(x^{10}=1^x\Rightarrow x^{10}=1\)(số 1 có luỹ thừa là bao nhiêu thì vẫn là 1 thui)\(\Rightarrow x=1\)
Vậy x = 1
d) \(x^{10}=x\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^9-1=0\)
+)TH1: \(x=0\)
+)TH2: \(x^9-1=0\Rightarrow x^9=1\Rightarrow x=1\)
Vậy x = 0 hoặc x = 1
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)
a) 2x - 15 = 17
2x = 25
b) ( 7x - 11 )3 = 25. 52 + 200
(7x - 11)3 = 32 . 25 + 200
(7x -11)3 = 1000
(7x-11)3 = 103
7x - 11 = 10
7x = 10+11
7x = 21
x = 21 : 7
x = 3
like nha
\(\left(3x-1\right)^3=25\left(3x-1\right)\\ \Leftrightarrow\left(3x-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\\ \left(3x-14\right)^3=2^5\cdot5^2+200\\ \Leftrightarrow\left(3x-14\right)^3=1000=10^3\\ \Leftrightarrow3x-14=10\Leftrightarrow x=8\)
\(\left(3x-1\right)^3=25\left(3x-1\right)\)
\(\Rightarrow\left(3x-1\right)\left(9x^2-6x+1-25\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(9x^2-6x-24\right)=0\)
\(\Rightarrow3\left(3x-1\right)\left(x-2\right)\left(3x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left(3x-14\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(3x-14\right)^3=1000\)
\(\Rightarrow3x-14=10\Rightarrow3x=24\Rightarrow x=8\)
GIÚP MÌNH VỚI MN ƠIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
\(A=\dfrac{\left(20.5\right)^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
\(B=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^5.0,3}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^5.0,3}=\dfrac{3^5}{0,3}=810\)
\(5.5^{2x+1}=\left(5^2\right)^2\)
\(5.5^{2x}.5=5^4\)
\(5^2.5^{2x}=5^4\)
\(5^{2x}=5^4:5^2\)
\(5^{2x}=5^2\)
\(\Rightarrow x=1\)
#Hoc tot!!!
~NTTH~
\(5.5^{2x+1}=\left(5^2\right)^2\)
=> \(5^{2x+2}=\left(5^2\right)^2\)
=> \(5^{x+1}.5^2=5^2.5^2\)
=> \(5^{x+1}=5^2\)
=> \(x+1=2\)
=> \(x=1\)