K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

Hình em tự vẽ nha!

Bài 1:

a) Xét 2 \(\Delta\) \(AMB\)\(CMB\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

Cạnh MB chung

=> \(\Delta AMB=\Delta CMB\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(ADM\)\(CBM\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(DM=BM\left(gt\right)\)

=> \(\Delta ADM=\Delta CBM\left(c-g-c\right)\)

=> \(\widehat{ADM}=\widehat{CBM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AD\) // \(BC.\)

Chúc bạn học tốt!

anh cs thể vẽ cho e đc hk? em lười vẽ quá ~.~,,giúp e bài 2 nx ik a,nhaaaaa,e đang cần gấp lắm ạ,please ~~Vũ Minh Tuấn

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

a: Xét ΔMBA và ΔMDC có

MB=MD

\(\widehat{BMA}=\widehat{DMC}\)

MA=MC

Do đó: ΔMBA=ΔMDC

b: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD

c: Ta có ΔABC vuông tại B

mà BM là đường trung tuyến

nên AC=2BM

Bài 1: dễ, nếu cậu tk tớ sẽ giải

Bài 2: ( tự vẽ hình nhess)

Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)

mà BM=2/3 BC

=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)

=> AM là trung tuyến ứng BN

mà AM được kéo dài cắt BN tại I nên I là trung điểm BN

29 tháng 11 2016

B A C N M 1 2 3 4

Giải:
a) Xét \(\Delta BAM,\Delta NCM\) có:

\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_2}=\widehat{M_4}\) ( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta BAM=\Delta NCM\left(c-g-c\right)\)

\(\Rightarrow CN=AB\) ( cạnh t/ứng )

\(\Rightarrow\widehat{BAM}=\widehat{NCM}\) ( cạnh t/ứng )

\(\widehat{BAM}=90^o\Rightarrow\widehat{NCM}=90^o\) hay \(CN\perp AC\)

b) Xét \(\Delta AMN=\Delta CMB\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_1}=\widehat{M_3}\) ( đối đỉnh )

\(BM=MN\left(gt\right)\)

\(\Rightarrow\Delta AMN=\Delta CMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{CAN}\) ( cạnh t/ứng )

Mà 2 góc trên nằm ở vị trí so le trong nên AN // BC

Vậy...


 

29 tháng 11 2016

cảm ơn bạn