c/m
(x+1)/(x+2)>x/(x+1) ( với x lớn hơn hoặc bằng 0 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)
b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)
c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)
Bạn tự kết luận nha!!
a: (x+2)(x-3)<0
=>x+2>0 và x-3<0
=>-2<x<3
b: (x-1)(x-2)>=0
=>x-2>=0 hoặc x-1<=0
=>x>=2 hoặc x<=1
c: Ta có: \(\left(x^2+1\right)\left(x+2\right)>0\)
=>x+2>0
=>x>-2
a) (x+2)(x-3) <0 \(\Leftrightarrow\)x+2>0 , x-3 <0 hoặc x+2<0 , x-3 >0 ( loại)
\(\Leftrightarrow\)-2<x<3
b) \(\left(x-1\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow\)x-1\(\ge\)0 , x-2 \(\ge\)0 hoặc x-1 \(\le0\), x-2 \(\le0\)
\(\Leftrightarrow\)\(1\le x\)hoặc \(x\ge2\)
c) ta có \(x^2+1>0\)\(\Rightarrow\)x+2 >0 \(\Leftrightarrow\)x>-2
a) \(2-x\ge0\Leftrightarrow x\le2\)
b) \(2+x\ge0\Leftrightarrow x\ge-2\)
c) \(7-x\ge0\Leftrightarrow x\le7\)
Giả sử : \(\frac{x+1}{x+2}>\frac{x}{x+1}\left(ĐKXĐ:x\ge0\right)\)
=> \(\left(x+1\right)^2>x\left(x+2\right)\)
=> \(x^2+2x+1>x^2+2x\)
=> \(x^2+2x+1-x^2-2x>0\)
=> \(1>0\) ( hợp lý )
Suy ra \(\frac{x+1}{x+2}>\frac{x}{x+1}\)