27-x3 phần 5x+5 chia 2x-6 phần 3x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
a: ta có: \(x^2+3x-\left(2x+6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
b: Ta có: \(5x+20-x^2-4x=0\)
\(\Leftrightarrow\left(x+4\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
a) Ta có: \(\dfrac{-3}{5}x+\dfrac{-7}{4}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{-3}{5}x=\dfrac{3}{10}+\dfrac{7}{4}=\dfrac{41}{20}\)
\(\Leftrightarrow x=\dfrac{41}{20}:\dfrac{-3}{5}=\dfrac{41}{20}\cdot\dfrac{-5}{3}\)
hay \(x=-\dfrac{41}{12}\)
Vậy: \(x=-\dfrac{41}{12}\)
a: 3-2|4x-5|=2/6
=>2|4x-5|=3-1/3=8/3
=>|4x-5|=4/3
=>4x-5=4/3 hoặc 4x-5=-4/3
=>4x=19/3 hoặc 4x=11/3
=>x=19/12 hoặc x=11/12
c: (7-3x)(2x+1)=0
=>2x+1=0 hoặc -3x+7=0
=>x=-1/2 hoặc x=-7/3
d: 2x(5-3x)>0
=>x(3x-5)<0
=>0<x<5/3