Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các phương trình và bất phương trình sau :
1.1
a) \(2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)
b) \(5x-3< 2x+9\)
\(\Leftrightarrow5x-2x< 3+9\)
\(\Leftrightarrow3x< 12\)
\(\Leftrightarrow x< 4\)
Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)
1.2
a) \(3x+2=0\)
\(\Leftrightarrow3x=-2\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)
b) \(-x+5>6-2x\)
\(\Leftrightarrow-x+2x>-5+6\)
\(\Leftrightarrow x>1\)
Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)
c) \(\dfrac{2x-5}{x+3}=4\)
ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)
\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)
\(\Rightarrow2x-5=4x+12\)
\(\Leftrightarrow2x-4x=5+12\)
\(\Leftrightarrow-2x=17\)
\(\Leftrightarrow x=\dfrac{-17}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)
d) \(\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)
1.3
a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)
b) \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)
a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)
b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)
\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)
a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)
\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)
\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)
b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4x^2-16.\dfrac{7x-2}{3x+6}\)
\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)
\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)
Bài 1:
a: \(=\dfrac{4x^3-6x^2+6x^2-9x-10x+15}{2x-3}\)
\(=2x^2+3x-5\)
b: \(=\dfrac{5x^4+5x^3+4x^3+4x^2-6x^2-6x+2x+2-10}{x+1}\)
\(=5x^3+4x^2-6x+2-\dfrac{10}{x+1}\)
c: \(=\dfrac{5x^3+10x^2+4x^2+8x-5x-10+11}{x+2}\)
\(=5x^2+4x-5+\dfrac{11}{x+2}\)
d: \(=\dfrac{\left(x+1\right)^3}{x+1}=\left(x+1\right)^2\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
b)
\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
c)
\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
d)
\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
e)
\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)
➜\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)
➜\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Mk đang hok zoom sorry nha!!!
A). (x^4+ax^2+1):(x^2+2x+1)
gọi g(x) là thương của phép chia (x^4+ax^2+1) cho (x^2+2x+1)
=>x^4+ax^2+1=(x^2+2x+1).g(x) đúng với mọi x
=>x^4+ax^2+1= (x+1)^2.g(x) đúng v mọi x
chọn x=-1=>(-1)^4+a.(-1)^2+1=0
=> 1+a+1=0=>a=-2