K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2^x\times8^{x-1}=32\Leftrightarrow2^x\times2^{3x-3}=32\)

\(\Leftrightarrow2^{4x-3}=32\Leftrightarrow2^{4x-3}=2^5\)

\(\Rightarrow4x-3=5\Leftrightarrow4x=8\Rightarrow x=2\)

vậy \(x=2\)

12 tháng 12 2019

\(Ta có : 2 ^x . 8\)\(x - 1\) \(= 32\)

\(\Rightarrow\)\(2 ^ x . 2\)\(3. ( x - 1 )\) \(=\) \(32\)

\(\Rightarrow\)\(2 \)\(x + 3. ( x - 1 ) \)\(= 32\)

\(\Rightarrow\)\(2\)\(x + 3x - 3 \) \(= 32\)

\(\Rightarrow\)\(2\)\(4x - 3\) \(= 32\)

\(\Rightarrow\)\(2\)\(4x - 3\)\(= 2^5\)

\(\Rightarrow\)\(4x - 3 = 5\)

\(\Rightarrow\)\(4x = 8\)

\(\Rightarrow\)\(x = 2\)

\(Vậy : x = 2\)

7 tháng 7 2021

\(a,\left(3x-7\right)^2=\left(2-2x\right)^2\)

a,\(=>\left(3x-7\right)^2-\left(2-2x\right)^2=0\)

\(< =>\left(3x-7+2-2x\right)\left(3x-7-2+2x\right)=0\)

\(< =>\left(x-5\right)\left(5x-9\right)=0=>\left[{}\begin{matrix}x=5\\x=1,8\end{matrix}\right.\)

b, \(x^2-8x+6=0< =>x^2-2.4x+16-10=0\)

\(< =>\left(x-4\right)^2-\sqrt{10}^2=0\)

\(=>\left(x-4+\sqrt{10}\right)\left(x-4-\sqrt{10}\right)=0\)

\(=>\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)

c, \(4x^2-2x-1=0\)

\(< =>\left(2x\right)^2-2.2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{5}{4}=0\)

\(=>\left(2x-\dfrac{1}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)

\(=>\left(2x+\dfrac{-1+\sqrt{5}}{2}\right)\left(2x-\dfrac{1+\sqrt{5}}{2}\right)=0\)

\(=>\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{4}\\x=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)

d,\(x^4-4x^2-32=0\)

đặt \(t=x^2\left(t\ge0\right)=>t^2-4t-32=0\)

\(< =>t^2-2.2t+4-6^2=0\)

\(=>\left(t-2\right)^2-6^2=0=>\left(t-8\right)\left(t+4\right)=0\)

\(=>\left[{}\begin{matrix}t=8\left(tm\right)\\t=-4\left(loai\right)\end{matrix}\right.\)\(=>x=\pm\sqrt{8}\)

 

5 tháng 5 2023

Nhớ tick cho mình nha

\(\dfrac{1}{3}\)x\(\dfrac{1}{x^2}\) - 8x + 32 = \(\dfrac{1}{x^2}\) - 2x + 8  ĐK: x ≠ 0

\(\dfrac{1}{3}\)x\(\dfrac{1}{x^2}\) - \(\dfrac{1}{x^2}\) - 8x + 2x + 32 - 8 = 0

\(\dfrac{1}{3}\)x2 - 6x +24 = 0

\(\left(x-12\right)\) \(\left(x-6\right)\) = 0

\(\left[{}\begin{matrix}x-12=0\\x-6=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=12\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

⇒ S = \(\left\{12;6\right\}\)

 

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

2.

\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)

\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)

\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)

\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)

Từ $(1);(2)$ ta có đpcm.

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

1.

\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)

\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)

\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)

\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)

Từ $(1);(2)$ ta có đpcm.

14 tháng 1 2017

ta thấy \(\left|2x-8\right|\ge0\forall x\)

\(\left|32-8x\right|\ge0\forall x\)

\(\Rightarrow\left|2x-8\right|+\left|32-8x\right|\ge0\forall x\)(1)

Để \(\left|2x-8\right|+\left|32-8x\right|=0\)(2)

Từ (1)và (2)

\(\Rightarrow\orbr{\begin{cases}\left|2x-8\right|=0\\\left|32-8x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-8=0\\32-8x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=4\end{cases}}}\)

KL x=4

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

AH
Akai Haruma
Giáo viên
2 tháng 10 2018

Lời giải:

a) \(x^3+5x^2-5=15x-32\)

Bạn xem lại xem có sai đề không

b)

\(8x^2+2x-15=0\)

\(\Leftrightarrow 16x^2+4x-30=0\)

\(\Leftrightarrow (4x+\frac{1}{2})^2-\frac{121}{4}=0\)

\(\Rightarrow \left[\begin{matrix} 4x+\frac{1}{2}=\sqrt{\frac{121}{4}}=\frac{11}{2}\\ 4x+\frac{1}{2}=-\sqrt{\frac{121}{4}}=\frac{-11}{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{5}{4}\\ x=\frac{-3}{2}\end{matrix}\right.\)

3 tháng 11 2021

\(x^3+5x^2-5=-15x-32\) đây ms đúng đề 

9 tháng 7 2019