K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)

\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)

\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)

Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:

\(E=5x.0+105=105\)

20 tháng 10 2021

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

14 tháng 10 2021

\(4x\left(x^2-5x+3\right)=4x^3-20x^2+12x\)

=> Chọn A

21 tháng 8 2020

Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)

\(=20x^6-8x^3+40x^3y+25y^2-5\)

\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)

\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)

Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)

\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)

\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)