tìm GTNN của Q=2x+1/x^2 + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Lời giải :
\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right|+\left|x-1\right|\)
\(=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)\left(1-x\right)\ge0\Leftrightarrow-1\le x\le1\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$
$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$
Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$
\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)
\(=\left|x-1\right|-\left|x+1\right|\)
+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)
+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)
+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)
\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)
Ta thấy:
- Với \(x\ge1\) ta tìm được \(Min_y=-2\)
- Với \(x< -1\) ta tìm được \(Max_y=2\)
11111111