(a+a2+a3+a3+a4+....+a29+a30) chia hết cho (a+1)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NB
1
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
5 tháng 2 2021
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)
\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)
LQ
0
30 tháng 1 2017
bn có thể lên trang học 24h mà kb với những người từ lp 6 trở lên rồi hỏi bài họ là đc mà!
tk nha!
MC
1
TN
7 tháng 9 2017
Ko mất tính tổng quát giả sử \(a_1=\text{max}\left\{a_2;a_3;a_4;a_5\right\}\).
Áp dụng BĐT AM-GM ta có:
\(a_1a_2+a_2a_3+a_3a_4+a_4a_5\le a_1\left(a_2+a_3+a_4+a_5\right)\)
\(\le\frac{\left(a_1+a_2+a_3+a_4+a_5\right)^2}{4}=\frac{1}{4}\)
Xảy ra khi có 2 số bằng \(\frac{1}{2}\) và 3 số còn lại bằng 0
Ta có
(a+a^2+a^3+........a^29+a^30)
=(a+a^2)+(a^3+a^4)+........(a^29+a^30)
=a(1+a)+a^3(1+a)+.........a^29(1+a)
=a+1(a+a^3+.......+a^29)chia hết cho a+1
nhớ k cho mình nha