Cho hai đường thẳng: (D): 2m(m + 1)x - y = -m - 1 và (D'): 4(m - 2)x + y = 3m - 1. Xác định m để D // D'.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy d: y = ( m + 2 ) x – m c ó a = m + 2 v à d ’ : y = − 2 x − 2 m + 1 c ó a ’ = − 2
+) Điều kiện để y = ( m + 2 ) x – m là hàm số bậc nhất m + 2 ≠ 0 ⇔ m ≠ − 2
+) Để d ≡ d ’ ⇔ a = a ' b = b ' ⇔ m + 2 = − 2 − m = − 2 m + 1 ⇔ m = − 4 m = 1 (vô lý)
Vậy không có giá trị nào của m để d ≡ d ’
Đáp án cần chọn là: D
Ta thấy d: y = ( 2 m − 3 ) x – 2 c ó a = 2 m – 3 ; b = − 2 v à d ’ : y = − x + m + 1 c ó a ’ = − 1 ; b ’ = m + 1
Điều kiện để y = ( 2 m − 3 ) x – 2 là hàm số bậc nhất là: a ≠ 0 ⇔ 2 m – 3 ≠ 0 ⇔ m ≠ 3 2
Để d // d’ thì a = a ' b ≠ b ' ⇔ 2 m − 3 = − 1 − 2 ≠ m + 1 ⇔ m = 1 m ≠ − 3 ⇔ m = 1 (TM)
Đáp án cần chọn là: A
Đáp án B
• Ta thấy d: y = (m + 2)x - m có a = m + 2; b = -m và d': y = -2x - 2m + 1 có
• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2 ≠ 0 ⇔ m ≠ -2
• Để d // d' ⇔ a = a'; b ≠ b'
a = a' ⇔ m + 2 = -2 ⇔ m = -4
b ≠ b' ⇔ -m ≠ -2m + 1 ⇔ m ≠ 1
Vì m = -4 thỏa mãn m ≠ -2; m ≠ 1 nên giá trị m cần tìm là m = -4
Vậy m = -4
Ta thấy d : y = ( m + 2 ) x – m c ó a = m + 2 ≠ 0 ⇔ m ≠ 2 v à d ’ : y = − 2 x − 2 m + 1 c ó a ’ = − 2 ≠ 0 .
Để d // d’ ⇔ a = a ' b ≠ b ' ⇔ m + 2 = − 2 − m ≠ − 2 m + 1 ⇔ m = − 4 m ≠ 1 ⇔ m = − 4 ( T M )
Đáp án cần chọn là: B
Đáp án B
• Ta thấy d: y = (m + 2)x - m có a = m + 2; b = -m và d': y = -2x - 2m + 1 có
• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2 ≠ 0 ⇔ m ≠ -2
• Để d // d' ⇔ a = a'; b ≠ b'
a = a' ⇔ m + 2 = -2 ⇔ m = -4
b ≠ b' ⇔ -m ≠ -2m + 1 ⇔ m ≠ 1
Vì m = -4 thỏa mãn m ≠ -2; m ≠ 1 nên giá trị m cần tìm là m = -4
Vậy m = -4
Đáp án C
• Ta thấy d: y = (m + 2)x - m có a = m + 2 và d': y = -2x - 2m + 1 có a' = -2
• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2 ≠ 0 ⇔ m ≠ -2
• Để d cắt d' ⇔ a ≠ a' ⇔ m + 2 ≠ -2 ⇔ m ≠ -4
Vậy m ≠ -2; m ≠ -4
(d): 2m(m+1)x-y=-m-1\(\Leftrightarrow\)y=(2m2 +2m)x+m+1
(d'): 4(m-2)x+y=3m-1 \(\Leftrightarrow\)y=3m-1-4(m-2)
để (d)// (d') thì \(\left\{{}\begin{matrix}2m^2+2m=4m-8\\3m-1\ne m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-m+4=0\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-\frac{1}{2}\right)^2+\frac{15}{4}=0\left(VL\right)\\m\ne1\end{matrix}\right.\)