K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

13 tháng 7 2019

\(3n+1⋮11-2n\)

\(\Rightarrow2\times(3n+1)⋮11-2n\)

\(\Rightarrow6n+2⋮11-2n\)

\(\Rightarrow6n+2⋮-(11-2n)\)

\(\Rightarrow6n+2⋮2n-11\)

\(\Rightarrow(6n-33)+35⋮2n-11\)

\(\Rightarrow35⋮2n-11(6n-33⋮2n-11)\)

\(\Rightarrow2n-11\inƯ(35)=\left\{-35;-7;-5;-1;1;5;7;35\right\}\)

2n-11-35-7-5-115735
2n-24461012161846
n-1223568923

a, Để \(n\in N\)

\(3n+1⋮11-2n\)

\(\Rightarrow6n+2⋮11-2n\)

Ta có\(3.\left(11-2n\right)⋮2n\)

Vì  \(11-2n⋮11-2n\)

\(33-6n⋮11-2n\)

\(6n+2+33-6n⋮11-2n\)

\(35⋮11-2n\)

\(\Rightarrow11-2n\inƯ\left(35\right)=\left\{\mp1;\mp5;\mp7;\mp35\right\}\)

Ta có bảng 

11-2n-11-55-77-3535
2n1012616418-2446
n563829-1223

phần b có gì sai sót ai đó sửa dùm ^^

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

18 tháng 8 2023

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

18 tháng 8 2023

nhớ nha