K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

a^2+b^2/a^2+c^2=b^2/c^2=b^2/ab=b/a

Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?

Ta có \(a^2+c^2\ge0\)  (gt)  mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))

Với \(a,b,c \ne0\),  \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)

                                                      => \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)

                                                       => \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)   mà \(\frac{a}{c}=\frac{c}{b}\)

                                                     => \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

3 tháng 12 2019

Theo đề bài

\(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}\Rightarrow\frac{a}{5}.\frac{b}{3}=\left(\frac{c}{2}\right)^2\Rightarrow\frac{a.b}{15}=\frac{c^2}{4}=\frac{a.b-c^2}{15-4}=\frac{11}{11}=1\)

\(\Rightarrow\frac{c^2}{4}=1\Rightarrow c^2=4\Rightarrow c=\pm2\)

+ Với c=-2

\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{-2}{2}=-1\Rightarrow a=-5;b=-3\)

+ Với c=2

\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{2}{2}=1\Rightarrow a=5;b=3\)

NV
27 tháng 3 2022

23.

Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)

Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:

\(\left(x-3\right)^2+\left(y-3\right)^2=5\)

Thay tọa độ E vào pt ta được:

\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)  \(\Rightarrow x_1x_2=8\)

Cả 4 đáp án của câu này đều sai

NV
27 tháng 3 2022

24.

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)

Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:

\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

- Với \(x-y+3=0\), ta có: 

\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)

- Với \(x+y-1=0\) ta có:

\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)

Vậy cả đáp án A và D đều đúng

Tương tự như câu 23, câu 24 đề bài tiếp tục sai

4 tháng 12 2017

Hello everybody, I'm Thao and I'm an A.R.M.Y . I am living in a happy family. There are four people in my family. Their names are : Jimin, Taehyung , Jungkook and me. They are handsome and cute singers. First, Jimin. His full name is Park Jimin. He was born on 13/10/1995 in Busan. Jimin is a cute boy with a round face and full lips. Selfie is his hobby. His lucky number is number three. Second, Kim Taehyung. Taehyung was born on 30/12/1995 in Deagu, Korea. His favorite colors are black, white and green. He's outgoing and he's so lovely . Joen Jungkook, was born on 1/9/1997 in Busan. "Fat Rabbit" is his nick name. Kook is very cute, too. He love dancing and skateboarding. I love my family so much ! Thanks for your listening !

4 tháng 12 2017

Viết bằng T.anh nha

a: Xét tứ giác ABDE có

AB//DE

AB=DE

=>ABDE là hình bình hành

b: Xét ΔIAB và ΔICD có

góc IAB=góc ICD

góc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IA/IC=IB/ID=AB/CD=3/14

=>IA/3=IC/14=(IA+IC)/(3+14)=15/17

=>IA=45/17cm; IC=210/17cm

c: IB/ID=3/14

=>IB/3=ID/14=(IB+ID)/(3+14)=8/17

=>ID=112/17(cm)

IC=210/17; ID=112/17; CD=14

IC^2+ID^2=(210/17)^2+(112/17)^2=196

CD^2=14^2=196

=>IC^2+ID^2=CD^2

=>ΔICD vuông tại I

d: S ABCD=1/2*AC*BD=1/2*8*15=4*15=60