K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

5 tháng 11 2023

tui lớp 8 ko bt làm :)

 

5 tháng 11 2023

trời ơi cíu tui

 

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

13 tháng 8 2016

\(A=4+4^2+4^3+...+4^{100}\)

\(A=\left(4+\text{ }4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=\left(1+4\right).\left(4\right)+\left(1+4\right).\left(4^3\right)+...+\left(1+4\right).\left(4^{99}\right)\)

\(A=5.\left(4+4^3+4^5+...+4^{99}\right)\)

Vậy A chia hết cho 5

Các bạn nha!

6 tháng 12 2015

Ta có

H=4+4^2+...+4^24

H=(4+4^2) + (4^3+4^4)+...+(4^23+4^24)

<=>H=20+4^2.20+...+4^22.20

<=>h=20(1+4^2+...+4^22) chia hết cho 20

 

Ta có

H=4 +4^2+...+4^24

<=>H=(4+4^2+4^3) +(4^4+4^5+4^6)+....+(4^22+4^23+4^24)

<=>H=4.21+4^4.21+....+4^22 .21

<=>H=21(4+4^4+...+4^22) chia hết cho 21

 

 

H=4+4^2+...+4^2

<=>h=(4+4^2+4^3+4^4+4^5+4^6)+....+(4^19+4^20+4^21+4^22+4^23+4^24)

=5420 + ...+4^18.5420

=13.420 +....+13.420.4^18

chia hết cho 420

nhớ tick mình nha,cảm ơn nhiều

 

30 tháng 12 2022

Ta có:

A = 4 + 42 + 43 +......+ 423+ 424 

= (4 + 42)) + (43 +44)......+ (423+ 424)

=(4 + 42).1+(4 + 42).42+...+(4 + 42).422

=20.(1+42+...+422) chia hết cho 20

Ta lại có:

 A = 4 + 42 + 43 +......+ 423+ 424

=(4 + 42 + 43)+...+(422+423+424)

=(4 + 42 + 43).1+...+(4 + 42 + 43​).421

=21.(1+...+421) chia hết cho 21

Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420

Vậy...

8 tháng 8 2019

mk chỉ giúp phần a nha

   B=1+ 4+42 +....+ 499

4B=4+ 42+43+...+4100

 4B-B=4100-1

3B=4100-1

8 tháng 8 2019

B= 1 + 4+4 MŨ 2+.....+4 MŨ 99

4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100

4B-B=4 MŨ 100- 1

3B=4 mũ 100-1

Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n

 Suy ra 4 mũ 100=4 mũ n

 suy ran=100