K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

15 tháng 10 2021

còn 1 câu nữa ạ:((

14 tháng 8 2023

a) *Xét x=0

==> Giá trị A=2022!(1)

*Xét 0<x≤2022

==> A=0(2)

*Xét x>2022

==> A≥2022!(3)

Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022

Mà để xmax ==> x=2022 

Vậy ...

b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)

Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất

Mà x-2021≠0 =>x-2021=1==>x=2022

Khi đó Bmax=6057

Vậy...

 

4 tháng 1 2016

a. A=1000-|x+5| < 1000

=> GTLN của A là 1000

<=> x + 5 = 0

<=> x = -5

b. B = |x-3| + 5 > 5

=> GTNN của B là 5

<=> x - 3 = 0

<=> x = 3

4 tháng 1 2016

a, x= -5

b, x= -3

15 tháng 3 2018

mau lên nha mình đang gấp

22 tháng 3 2018

Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)

Để A có GTLN 

\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN

\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z

\(\Leftrightarrow2n-7=1\)

\(\Leftrightarrow2n=8\)

\(\Leftrightarrow n=4\)

Vậy, A có GTLN là 32 khi x=4

3 tháng 11 2018

Th1 : x >= 2013

Th2 : x<2013

4 tháng 11 2018

TuanMinhAms sai rồi bn

để  A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất

\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)

dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)

khi đó GTLN của A = \(\frac{2026}{2}=1013\)

p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

31 tháng 10 2018

\(A=\frac{2026}{\left|x-2013\right|}+2\)

Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất

\(\Rightarrow\left|x-2013\right|\)nhỏ nhất

Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)

\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất

Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)

Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }