K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}=\left|-13\right|\)

\(=-8+\frac{1}{2}.8-5+13\)

\(=4\)

\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(-\frac{2012}{2013}\right)^0\)

\(=\frac{1}{2}.10-\frac{1}{4}+1\)

\(=5-\frac{5}{4}\)

\(=\frac{15}{4}\)

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+|-13|\)

\(=-12+\frac{1}{2}.8-5+13\)

\(=-12+4-5+13\)

\(=4\)

\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{1}{18}\)

\(b,2^8:2^5+3^3.2-12\)

\(=2^3+9.2-12\)

\(=8+18-12\)

\(=26-12\)

\(=14\)

Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!

Sửa lại câu b

\(=2^3+27.2-12\)

\(=8+54-12\)

\(=62-12\)

\(=50\)

25 tháng 10 2019

\(a)=\frac{7}{25}+\frac{4}{13}-\frac{5}{2}+\frac{18}{25}-\frac{17}{13}\)

\(=1-1-\frac{5}{2}\)

\(=-\frac{5}{2}\)

25 tháng 10 2019

cái này bạn bấm máy tính là ra mà 

19 tháng 9 2019

\(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)

\(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)

\(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)

17 tháng 11 2016

b/ Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào bài toán ta được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{99}-\frac{1}{\sqrt{100}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

Cả 2 câu là n tự nhiên khác 0 hết nhé

17 tháng 11 2016

a/ Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

Áp đụng vào bài toán được

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{1681}-\sqrt{1680}\)

\(=\sqrt{1681}-\sqrt{1}=41-1=40\)

17 tháng 9 2017

b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)

13 tháng 9 2017

đặt A=...

ta có 

A=\(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)

13 tháng 9 2017

Ta có:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)

Lại có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(\Leftrightarrow\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+....+\sqrt{99}-\sqrt{100}\)

\(\Leftrightarrow\sqrt{100}-1=10-1=9\)

28 tháng 7 2016

\(\left(\sqrt{4,5}-\frac{1}{2}.\sqrt{72}+5\sqrt{\frac{1}{2}}\right).\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)

=\(\left(\frac{3\sqrt{2}}{2}-3\sqrt{2}+\frac{5\sqrt{2}}{2}\right).\left(35\sqrt{6}-5\sqrt{6}-28\sqrt{6}\right)\)

=\(\left(\frac{3\sqrt{2}-6\sqrt{2}+5\sqrt{2}}{2}\right).2\sqrt{6}\)

=\(2\sqrt{2}.\sqrt{6}=4\sqrt{3}\)