\(\left(n^2-2n+1\right)^2+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)
\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)
\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)
\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy
\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
Chia cả tử và mẫu cho \(n^5\)
\(=\lim\dfrac{\left(\dfrac{2n-n^3}{n^3}\right)\left(\dfrac{3n^2+1}{n^2}\right)}{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{n^4-7}{n^4}\right)}=\lim\dfrac{\left(\dfrac{2}{n^2}-1\right)\left(3+\dfrac{1}{n^2}\right)}{\left(2-\dfrac{1}{n}\right)\left(1-\dfrac{7}{n^4}\right)}\)
\(=\dfrac{-1.3}{2.1}=-\dfrac{3}{2}\)
\(lim\dfrac{\left(n-1\right)^2.\left(7n+2\right)^n}{\left(2n+1\right)^4}\)
\(=lim\dfrac{n^4.\left(\dfrac{1}{n}-\dfrac{1}{n^2}\right).n^n.\left(7+\dfrac{2}{n}\right)^n}{n^4\left(2+\dfrac{1}{n}\right)^4}\)
\(=\dfrac{0}{2}=0\)
mình làm hơi gọn, bạn kh hiểu thì hỏi mình nha
\(lim\dfrac{\left(2-n\right)\left(3+2n^3\right)}{2n^2-1}=lim\dfrac{\left(\dfrac{2}{n}-1\right)\left(\dfrac{3}{n}+2n^2\right)}{2-\dfrac{1}{n^2}}=-\infty\)
\(\dfrac{lim\left(\sqrt{4n^2+1}-2n\right)n}{\sqrt[3]{4-n^3}+n}=lim\dfrac{n\left(\sqrt[3]{\left(4-n^3\right)^2}-n\sqrt[3]{4-n^3}+n^2\right)}{4.\left(\sqrt{4n^2+1}+2n\right)}\)
\(=lim\dfrac{\sqrt[3]{\left(n^3-4\right)^2}+n\sqrt[3]{n^3-4}+n^2}{4\left(\sqrt{4+\dfrac{1}{n^2}}+2\right)}=+\infty\)
Yêu cầu bài là gì vậy thưa bạn?