Cho hàm số y= \(f\left(x\right)=3x^2-9\left|x\right|+2\) và đường thẳng y=m-4 ( song song với Ox)
với giá trị nào của m thì hai đồ thị này cắt nhau tại 4 điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Thay x=0 và \(y=\sqrt{2}\) vào y=2x+b, ta được:
\(b+2\cdot0=\sqrt{2}\)
=>\(b=\sqrt{2}\)
b: Thay x=-2 và y=-2 vào y=-4x+b,ta được:
b-4(-2)=-2
=>b+8=-2
=>b=-10
c: Vì (d)//y=-căn 3*x nên a=-căn 3
=>\(y=-\sqrt{3}\cdot x+b\)
Thay x=1 và \(y=3-\sqrt{3}\) vào (d),ta được:
\(b-\sqrt{3}=3-\sqrt{3}\)
=>b=3
b: Để (d)//y=-3x+2 thì m-1=-3
=>m=-2
c:
PTHĐGĐ là:
(m-1)x-4=x-7
=>(m-2)x=-3
Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0
=>m<>2 và m-2>0
=>m>2
a: Để hai đường thẳng song song thì m-1=3-m
=>2m=4
hay m=2
\(\text{//}\Leftrightarrow m-1=3-m\Leftrightarrow m=2\\ \cap\Leftrightarrow m-1\ne3-m\Leftrightarrow m\ne2\)
đề bài thiếu, ko giải được, cái nghiệm -1 có thể của f(u) hoặc của u'
a) Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m-2=3\\m+3\ne m-3\end{matrix}\right.\Leftrightarrow m=5\)
b) Để hai đồ thị vuông góc thì \(3(m-2)=-1\)
\(\Leftrightarrow m-2=\dfrac{-1}{3}\)
hay \(m=\dfrac{-1}{3}+2=\dfrac{5}{3}\)
Lời giải:
1.PT hoành độ giao điểm:
$x^2-mx-4=0(*)$
Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$
$\Leftrightarrow (x+1)(x-4)=0$
$\Rightarrow x=-1$ hoặc $x=4$
Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$
Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$
2.
$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$
Áp dụng định lý Viet:
$x_1+x_2=m$ và $x_1x_2=-4$
Khi đó:
$y_1^2+y_2^2=49$
$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$
$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$
$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$
$\Leftrightarrow m^2(m^2+8)+8m^2=17$
$\Leftrightarrow m^4+16m^2-17=0$
$\Leftrightarrow (m^2-1)(m^2+17)=0$
$\Rightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
\(a,\Leftrightarrow3m-1=m+3\Leftrightarrow2m=4\Leftrightarrow m=2\\ b,\Leftrightarrow3m-1\ne m+3\Leftrightarrow m\ne2\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
Bằng BBT ta thấy minf(x)=\(\frac{-19}{4}\) tại \(x=\frac{\pm3}{2}\); maxf(x)=2 tại x=0.
ycbt <=> \(\frac{-19}{4}< m-4< 2\)\(\Leftrightarrow\frac{-3}{4}< m< 6\)
kl:...
#Walker