Tính:
4.(\(\frac{-1}{2}\))2 - (\(\frac{2}{3}\))3 . 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=182.\(\orbr{\begin{cases}1.\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)\\2.\left(\frac{1}{2}+\frac{1}{9}+\frac{1}{27}\right)\end{cases}}:\frac{4.\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1.\left(\frac{1}{3}+\frac{1}{49}-\frac{1}{343}\right)}:\frac{91}{80} \)
=.\(182.\left(\frac{1}{2}:\frac{4}{1}\right).\frac{91}{80}\)
=\(182.\frac{1}{8}.\frac{91}{80}\)
=.\(182.\frac{91}{640}\)
=\(\frac{8281}{320}\)
\(=182.\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4.\left(1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}}\right]:\frac{919191}{808080}\)
\(=182.\frac{1}{8}.\frac{808080}{919191}=\frac{182}{8}.\frac{80}{91}=20\)
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right):\frac{919191}{808080}\)
\(=\left(\frac{1}{2}:4\right):\frac{919191}{808080}=\frac{1}{8}\cdot\frac{808080}{919191}=\frac{10}{91}\)
Bài giải
\(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}\text{ : }\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{919191}{808080}\)
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}\text{ : }\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{91}{80}\)
\(=\left(\frac{1}{2}\text{ : }\frac{4}{1}\right)\text{ : }\frac{91}{80}=\frac{1}{8}\text{ : }\frac{91}{80}=\frac{10}{91}\)
\(\left[9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
có 9 số 1 có 9 số hạng
\(=\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=1\)
\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(9\frac{1}{2}-3\frac{1}{4}\right)}{2\frac{13}{36}.\left(3\frac{1}{2}+2\frac{3}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(\frac{19}{2}-\frac{13}{4}\right)}{\frac{85}{36}.\left(\frac{7}{2}+\frac{11}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{19.2-13}{4}}{\frac{85}{36}.\frac{7.2+11}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{25}{4}}{\frac{85}{36}.\frac{25}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}:\frac{85}{36}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}.\frac{36}{85}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3}{10}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3-5}{10}\right)^{-2}\)
\(=\left(\frac{-1}{5}\right)^{-2}\)
\(=\frac{1}{\left(-\frac{1}{5}\right)^2}=\frac{1}{\frac{\left(-1\right)^2}{5^2}}=\frac{1}{\frac{1}{25}}=25\)
= \(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}+\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}+\frac{1}{343}}\right):\frac{91}{80}\)
= \(\frac{1}{2}:4:\frac{91}{80}=\frac{10}{91}\)
Bài giải
\(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}\text{ : }\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{919191}{808080}\)
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}\text{ : }\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{91}{80}\)
\(=\left(\frac{1}{2}\text{ : }\frac{4}{1}\right)\text{ : }\frac{91}{80}=\frac{1}{8}\text{ : }\frac{91}{80}=\frac{10}{91}\)
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
\(4.\left(-\frac{1}{2}\right)^2-\left(\frac{2}{3}\right)^3.9\)
\(=4.\frac{1}{4}-\frac{8}{27}.9\)
\(=1-\frac{72}{27}\)
\(=\frac{3}{3}-\frac{8}{3}\)
\(=-\frac{5}{3}\)
^_^