Tìm GTNN của biểu thức A
A = \(2014.\)\(\sqrt{x}+2015.\sqrt{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách khác:
ĐKXĐ của A là 0=<x=<1
ta chúng minh A>=A(1)=2014
thật vậy A>=2014<=> 2014(canx -1)+2015can(1-x)>=0
<=> 2014(x-1)/(canx+1)+2015can(1-x) >=0
<=> can(1-x)[ 2015-2014*can(1-x)/(canx+1)] >=0
Ta có can (1-x) >=0 và 2015-2014*can(1-x)/(canx+1) >=0
=> A>=2014 dấu bằng xảy ra khí x=1
Vậy Amin=2014 khi x=1
cái này anh đưa ra giả thuyết nhưng chưa có đưa về điều cần cm mà sao đúng dc
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
DUG VAO CLIP SAU DO
**** NHE