Cho tam giác ABC có AB = AC. Lấy D trên cạnh AB trên cạnh AB sao cho AD = AE.
a) Chứng minh BE = CD. kinh
b) Gọi O là giao điểm của BE và CD . Chứng minh \(\Delta\)BOD =\(\Delta\)COE.
Giải bài chi tiết, đầy đủ; vẽ hình và ghi rõ giả thiết, kết luận.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta ADC\left(c.g.c\right)\\ \Rightarrow BE=CD\\ b,\Delta AEB=\Delta ADC\\ \Rightarrow\widehat{ABE}=\widehat{ACD};\widehat{AEB}=\widehat{ADC}\\ \Rightarrow180^0-\widehat{AEB}=180^0-\widehat{ADC}\\ \Rightarrow\widehat{BDO}=\widehat{CEO}\\ \left\{{}\begin{matrix}\widehat{ABE}=\widehat{ACD}\\\widehat{BDO}=\widehat{CEO}\\BE=CD\end{matrix}\right.\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)
a) Xét ∆BEA và ∆CDA, ta có:
BA = CA (gt)
\(\widehat{A}\)chung
AE = AD (gt)
Suy ra: ∆BEA = ∆CDA (c.g.c)
Vậy BE = CD (hai cạnh tương ứng)
b) ∆BEA = ∆CDA (chứng minh trên)
⇒\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)
\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)
\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)
Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)
AB = AC (gt)
⇒ AE + EC = AD + DB mà AE = AD (gt) => EC = DB
Xét ∆ODB và ∆OCE, ta có:
\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)
DB = EC (chứng minh trên)
\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)
Suy ra: ∆ODB = ∆OEC (g.c.g)
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
Bạn tự vẽ hình nhé:
a) Xét tam giác ABE và tam giác ACD có:
AD = AE (gt)
A chung
AB = AC (gt)
Suy ra: tam giác ABE = tam giác ACD
(c - g - c)
=> BE = CD ( 2 cạnh tương ứng
a, xét xem tam giác ABE và tam giác ACD có:
AD=AE (gt)
A chung
AB=AC (gt)
suy ra tam giác abe = tam giác adc
=> BE=CD ( 2 cạnh tương ứng)
a/ Xét tam giác AEB và tam giác ADC có:
Góc A: chung
AD=AE(gt)
AB=AC(gt)
=> Tam giác AEB=tam giác ADC(c-g-c)
=> BE=DC(Cạnh tương ứng)
b/ Ta có: Góc DOB+ODB+OBD=180 độ
Góc OEC+EOC+ECO=180 độ
Mà Góc DOB=EOC(đối đỉnh)
Và Góc OBD=OCE(góc tương ứng)
=> Góc ODB=OEC
Ta lại có:
AB=AC(gt)
AD=AE(gt)
Mà BD=AB-AD
CE=AC-AE
=> BD=CE
Xét tam giác BOD và tam giác COD có:
BD=CE(cmt)
Góc ODB=OEC(cmt)
Góc OBD=OCE(góc tương ứng)
=> Tam giác BOC=tam giác COD(g-c-g)(đpcm)
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
\(a)\)Xét \(\Delta ABE\) và \(\Delta ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}:\) chung
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(2 cạnh tương ứng)
\(b)AB=DA+DB\)
\(AC=EA+EC\)
Mà \(AB=AC;AD=AE\)
\(\Rightarrow DB=EC\)
Xét \(\Delta BOD\) và \(\Delta COE\) có:
\(\widehat{BOD}=\widehat{COE}\left(đ^2\right)\)
\(DB=EC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(\Delta ABE=\Delta ACD\right)\)
\(\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)