K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

A B C D M

Cm:  Trên tia đối của của MA vẽ tia MD sao cho MA = MD

Xét t/giác AMB và t/giác DMC

có MA = MD 

 BM = MC (gt)

 \(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

=> t/giác AMB = t/giác DMC (c.g.c)

=> \(\widehat{B}=\widehat{MCD}\)(2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AB // CD => \(\widehat{A}+\widehat{C}=180^0\)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\)

Xét t/giác ABC và t/giác CDA

có: AB = CD (do t/giác ABM = t/giác DCM)

  \(\widehat{A}=\widehat{C}=90^0\) (cmt)

 AC: chung

=> t/giacs ABC = t/giác CDA (c.g.c)

=> AD = BC (2 góc t/ứng)

Ta có: AM + MD = AD

=> 2AM = AD (do AM = MD)

hay 2AM = BC (do AD = BC)

=> AM = 1/2BC

10 tháng 11 2021

a, Ta có \(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow3\widehat{ACB}=90^0\Rightarrow\left\{{}\begin{matrix}\widehat{ACB}=30^0\\\widehat{ABC}=60^0\end{matrix}\right.\)

b, Vì \(\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đối.đỉnh\right)\end{matrix}\right.\) nên \(\Delta ACM=\Delta DBM\left(c.g.c\right)\)

c, Vì \(\left\{{}\begin{matrix}AC=BD\left(\Delta ACM=\Delta DBM\right)\\AB.chung\\BC=AD\left(=2AM\right)\end{matrix}\right.\) nên \(\Delta ABC=\Delta BAD\left(c.c.c\right)\)

Do đó \(\widehat{BAC}=\widehat{ABD}=90^0\)

Vậy ...

31 tháng 3 2016

A B C M G

Vì M(1;-1) là trung điểm BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác ABC nên \(\overrightarrow{MA}=3\overrightarrow{MG}\) từ đó tìm được A(0;2)

Vì tam giác ABC cân tại A nên \(BC\perp MA\) tức là đường thẳng BC đi qua M(1;-1), nhận \(\overrightarrow{MA}=\left(-1;3\right)\) làm vec tơ pháp tuyến.

Do đó đường thẳng BC có phương trình  \(-1\left(x-1\right)+3\left(y+1\right)=0\)

                                                           hay  \(-x+3y+4=0\)

Do tam giác ABC vuông tại A nên MB=MC=MA=\(\sqrt{10}\)

Suy ra B, C nằm trên đường tròn \(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Từ đó tọa độ B, C là nghiệm của hệ phương trình 

\(\begin{cases}-x+3y+4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình thu được (x;y) = (4;0) và (x;y) = (-2;2)

Vậy A(0;2), B(4; 0), C(-2;-2)

9 tháng 12 2016

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

9 tháng 12 2016

bn vẽ hình giùm mik nha

a) xét tam giác ABM và tam giác ACM có:

AM cạnh chung

BM=MC(M trđ BC)

AB=AC(gt)

Nên tam giác ABM = tam giác ACM(ccc)

b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)

hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC

c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC

c: Xét ΔBAC vuông tại B có 

\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{C}=30^0\)

hay \(\widehat{BAC}=60^0\)

18 tháng 2

bây giờ có cần thêm câu trà lời không bạn

Xét ΔABC có 

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

29 tháng 7 2016

Hỏi đáp Toán

29 tháng 7 2016

Bạn tự vẽ hình nhé!

a,  Xét tam giác AMB và NMC có:

     AM=NM  (gt)

     BM=CM  (gt)

     Góc AMB=NMC (đối đỉnh)

=> Tg AMB=NMC (c.g.c)  => AB=CN

+)  Tg AMB=NMC => Góc ABM=MCN

Mà hai góc trên so le trong => AB//CN

b, Xét Tg ABC và CNA có:

BAC=NCA (=90o;  do AB//CN)

AC chung

AB=CN

=> Tg ABC=CNA  (c.g.v)  => AN=BC

Mà AM=AN.1/2  => AM=BC.1/2

(Nếu sai thì bạn nhắc mk nhé, chúc bạn học tốt!^^)