K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔCAH vuông tại H và ΔCDH vuông tại H có 

CH chung

AH=DH(gt)

Do đó: ΔCAH=ΔCDH(hai cạnh tương ứng)

Suy ra: CA=CD(Hai cạnh tương ứng)

Xét ΔCAD có CA=CD(cmt)

nên ΔCAD cân tại C(Định nghĩa tam giác cân)

b) Xét ΔBAH vuông tại H và ΔBDH vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBAH=ΔBDH(hai cạnh góc vuông)

Suy ra: BA=BD(Hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

CA=CD(cmt)

BC chung

AB=DB(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)(hai góc tương ứng)

mà \(\widehat{BAC}=90^0\)(gt)

nên \(\widehat{BDC}=90^0\)

hay KD\(\perp\)CE(đpcm)

c) Xét ΔCAE vuông tại A và ΔCDK vuông tại D có 

CA=CD(cmt)

\(\widehat{ACE}=\widehat{DCK}\)(hai góc đối đỉnh)

Do đó: ΔCAE=ΔCDK(cạnh góc vuông-góc nhọn kề)

Suy ra: CE=CK(hai cạnh tương ứng)

Xét ΔCEK có CE=CK(cmt)

nên ΔCEK cân tại C(Định nghĩa tam giác cân)

d) Ta có: ΔCAE=ΔCDK(cmt)

nên AE=DK(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DK=BK(D nằm giữa B và K)

mà BA=BD(cmt)

và AE=DK(cmt)

nên BE=BK

Ta có: CE=CK(cmt)

nên C nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BE=BK(cmt)

nên B nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BC là đường trung trực của EK

hay BC\(\perp\)EK

mà BC\(\perp\)AD(cmt)

nên AD//EK(Định lí 1 từ vuông góc tới song song)

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1