Cho tam giác ABC vuông ở A. Gọi D là trung điểm của AB, kẻ DE vuông góc với BC. Chứng minh:
a) CD2 - DB2 = AC2
b) AC2 = EC2 - EB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
góc B=góc C
=>ΔEBD=ΔFCD
b: Xet ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
=>ΔAED=ΔAFD
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
=>AD là trung trực của EF
b: Sửa đề: ΔEKF
Xét ΔEKF có
FD là trung tuyến
FD=EK/2
=>ΔFEK vuông tại F
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc CF