cho tam giác ABC. Gọi K,D lần lượt là trung điểm của các cạnh AB,BC. Trên tia đối của tia DA lấy điểm M sao cho DM=DA. Trên tia đối của tia KM lấy điểm N sao cho KN=KM. Chứng minh:
a) \(\bigtriangleup\)ADC=\(\bigtriangleup\)MDB b) \(\bigtriangleup\)AKN=\(\bigtriangleup\)BKM c) A là trung điểm của đoạn thẳng NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ mà bạn cứ chứng minh theo trường hợp c.g.c thôi còn câu c thì bạn chứng minh BN và BM cùng bằng AC thôi
a: Xét ΔADC và ΔMDB có
DA=DM
\(\widehat{ADC}=\widehat{MDB}\)
DC=DB
Do đo: ΔADC=ΔMDB
b: Xét ΔAKN và ΔBKM có
KA=KB
\(\widehat{AKN}=\widehat{BKM}\)
KN=KM
Do đó; ΔAKN=ΔBKM
c: Xét tứ giác ABMC có
D là trung điểm của AM
D là trung điểm của BC
Do đó: ABMC là hình bình hành
SUy ra: AC//BM
Xét tứ giác ANBM có
K là trung điểm của AB
K là trung điểm của MN
Do đó: ANBM là hình bình hành
Suy ra: AN//BM
mà AC//BM
nên A,N,C thẳng hàng
mà AC=AN
nên A là trung điểm của CN
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
Xét ΔABC có
AI,CK là các đường trung tuyến
AI cắt CK tại D
Do đó: D là trọng tâm của ΔABC
Xét ΔABC có
CK là đường trung tuyến
D là trọng tâm của ΔABC
Do đó: \(CD=\dfrac{2}{3}CK\)
Ta có: CD+DK=CK
=>\(DK=CK-\dfrac{2}{3}CK=\dfrac{1}{3}CK\)
=>CD=2KD
a Xét tứ giác ABCM có
D là trung điểm chun của AC và BM
=>ABCM là hình bình hành
=>AM//BC và AM=BC
b: Xét tứ giác ANBC có
E là trung điểm chung của AN và BC
=>ANBC là hình bình hành
=>AN//BC và AN=BC
=>M,A,N thẳng hàng
Ảnh đẹp thì