Tính: \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)
Đặt \(A=\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}\)
\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}=\frac{1}{\sqrt{k\left(k+1\right)}}>\frac{1}{\left(k+1\right)\sqrt{k}}>\frac{1}{\left(k+1\right)k}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow1-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow1-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2011}\)
\(\Rightarrow\frac{88}{45}>\frac{2011-\sqrt{2011}}{2011}>A>\frac{2010}{2011}>\frac{87}{89}\)
\(\Rightarrow\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)
Tổng quát: \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=1+\frac{\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=1+\frac{1}{n^2\left(n+1\right)^2}+\frac{2}{n\left(n+1\right)}\)
\(=\left(1+\frac{1}{n\left(n+1\right)}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\left|1+\frac{1}{n}-\frac{1}{n+1}\right|=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng ta được:
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2009^2}+\frac{1}{2010^2}}\)
\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2009}-\frac{1}{2010}\)
\(=2008+\frac{1}{2}-\frac{1}{2010}\)
\(=2008\frac{502}{1005}\)
\(\left(2n+1\right)^2=4n^2+4n+1\)
\(>4n^2+4n=4n\left(n+1\right)\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
\(\Rightarrow\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{1}{2}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\) \(=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)
\(< \frac{1}{2}\cdot\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}\right)\)
\(< \frac{1}{2}\)
a) \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n^2+2n+1+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
=>đpcm
b) Từ công thức trên ta có:
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
=> \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2010}-\frac{1}{2011}\right)\)
\(=2010+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\right)\)
\(2010+\left(1-\frac{1}{2011}\right)=2010+\frac{2010}{2011}=2010\frac{2010}{2011}\)
(1 +2010) > 2\(\sqrt{1.2010}\)=> \(\frac{1}{\sqrt{1.2010}}\)> 2/2011 tương tự các phần tử còn lại
vậy C > 2/2011+2/2011+.....2/2011 = 2.2010/2011
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
Xét:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\left(\frac{1}{k}-\frac{1}{k+1}\right)^2+\frac{2}{k\left(k+1\right)}+1=\frac{1}{k^2\left(k+1\right)^2}+\frac{2}{k\left(k+1\right)}+1=\left(\frac{1}{k\left(k+1\right)}+1\right)^2\)
\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{1}{k\left(k+1\right)}+1\)\(=1+\frac{1}{k}-\frac{1}{k+1}\)
Cho \(k\)chạy từ 1 đến 2010 ta có
Tổng cần tính
\(=\)\(1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2010}-\frac{1}{2011}\)
\(=2011-\frac{1}{2011}=\frac{2010.2012}{2011}\)