Giải phương trình:
(x-1)\(\sqrt{3x-1}\)=2\(x^2\)-4x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)
Thay x=-1 vào pt thấy thỏa mãn
Vậy pt có nghiệm duy nhất x=-1
Bài làm sai, thiếu giá trị của $x$, ĐKXĐ loằng ngoằng.
Chị/anh xem lại nhé! Đây là câu cuối của đề thi tuyển sinh 10 năm nay ở Khánh Hòa.
\(\sqrt{x+1}+1=4x^2+\sqrt{3x}\left(x\ge0\right)\\ \Leftrightarrow\sqrt{x+1}+\sqrt{3x}=4x^2-1\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}-\sqrt{3x}}=\left(2x-1\right)\left(2x+1\right)\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}-\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vì biểu thức trong ngoặc còn lại lớn hơn 0 với mọi \(x\ge0\) bằng cách khảo sát hàm số ta sẽ nhận ra điều này.
a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)
\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)
\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)
\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)
\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)
\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)
\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
b. ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)
\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)
\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Lời giải:
Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:
$a+b=\sqrt[3]{a^3+b^3-1}+1$
$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$
$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$
$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$
$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$
$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$
$\Leftrightarrow (a+b)(ab-a-b+1)=0$
$\Leftrightarrow (a+b)(a-1)(b-1)=0$
Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$
$\Leftrightarrow x^2+3x-5=-(x+2)$
$\Leftrightarrow x^2+4x-3=0$
$\Leftrightarrow x=-2\pm \sqrt{7}$
Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$
$\Leftrightarrow x^2+3x-6=0$
$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$
Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$
$\Leftrightarrow x=-1$
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)