K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

P≥ \(\sqrt{3}\) nha

23 tháng 11 2019

Ta có (ad−bc)2+(ac+bd)2=a2d2+b2c2−2abcd+a2c2+b2d2+2abcd=(a2+b2)(c2+d2)
Từ gia thiết ta có
1+(ac+bd)2=(a2+b2)(c2+d2)
Áp dụng BĐT AM-GM ta có
(a2+b2)+(c2+d2)≥2√(a2+b2)(c2+d2)
Do đó S≥ac+bd+2√(a2+b2)(c2+d2)
=> S≥(ac+bd)+2√1+(ac+bd)2
Dễ thấy rằng S>0
Đặt x = ac+bd
=>S≥x+2√1+x2
S2≥x2+4(1+x2)+4x.√1+x2=(√1+x2+2x)2+3≥3
Do đó S≥√3 (đpcm)

bài này thì đơn giản thôi

1+(ac+bd)2=(ad-bc)2+(ac+bd)2=a2d2+b2c2+a2c2+b2d2

=(a2+b2)(c2+d2)

\(P=a^2+b^2+c^2+d^2+ac+bd\ge ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)

đặt ac+bd=Q.

P trở thành:

\(P=Q+2\sqrt{Q^2+1}\Rightarrow P^2=Q^2+4\left(Q^2+1\right)+4Q.\sqrt{Q^2+1}=\left(\sqrt{Q^2+1}+2Q\right)^2+3\ge3\)

\(\Rightarrow P\ge\sqrt{3}\left(Q.E.D\right)\)

24 tháng 8 2017

Bạn giải thích chỗ này ra được không \(ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)

19 tháng 8 2018

ta có \(a^2+b^2+c^2+d^2+ac+bd\)d

=2(...................giống bên trên......................)=2a^2+2b^2+2c^2+2d^2+2ac+2bd

=(a^2+2ac+c^2)+(b^2+2bd+d^2)+(a^2+2ad+d^2)+(b^2+2bc+c^2)-2ad-2bc

=(a+c)^2+(b+d)^2+(a+d)^2+(b+c)^2-2(ad-bc)

mà ad-bc=-1

đến dây bạn tự làm

20 tháng 8 2018

toán ko có lời giải   mà người đăng câu hỏi này cx có  vấn đề thần kinh mong mn thông cảm 

người vít câu tl này là ng thông minh và đẹp trai

23 tháng 6 2017

Bài 1:

Ta có:

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=a^2.\left(c^2+d^2\right)+b^2.\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)

\(\rightarrow\)đpcm

Chúc bạn học tốt!!!

23 tháng 6 2017

Bài 1:

\(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)

\(\Rightarrowđpcm\)

Bài 2

Đặt
\(A=x^3+9x^2+27x+27=\left(x+3\right)^3\)

Thay x = 97

\(\Leftrightarrow A=100^3=1000000\)

Vậy A = 1000000 khi x = 97

22 tháng 10 2016

Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)

13 tháng 10 2016

1)chứng minh cái j ???

2)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b)Ta có: 

\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

\(\Leftrightarrow a^2b^2+c^2d^2+2abcd\le a^2b^2+a^2d^2+b^2c^2+c^2d^2\)

\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(Đpcm)

c)Áp dụng Bđt Bunhiacopxki ta có:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow x^2+y^2\ge2\)\(\Rightarrow S\ge2\)

Dấu = khi \(x=y=1\)

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

11 tháng 6 2016

mà đề cho (a^2 + b^2) + (c^2 + d^2) thì phải liên tưởng đến (a^2 + b^2)(c^2 + d^2) để đưa vào bất đẳng thức. Vậy phải xuất phát từ biểu thức này và biến đổi theo một cách nào đó cho nó xuất hiện giả thiết là : ad - bc = 1. Ở đây là thêm và bớt 2abcd 
Ta có: (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 - 2abcd + 2abcd = (ad - bc)^2 + (ac + bd)^2 
Thay: ad - bc = 1 => 1 + (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) 
Áp dụng BĐT Cauchy: 
(a^2 + b^2) + (c^2 + d^2) ≥ 2√[(a^2 + b^2)(c^2 + d^2)] 
=> a^2 + b^2 + c^2 + d^2 + ac + bd ≥ 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd 
Do đó chỉ cần CM: 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd ≥ √3 
<=> 2 √[1 + (ac + bd)^2] + ac + bd ≥ √3 
Đặt ac + bd = x và p = 2√(1 + x^2) + x 
Ta có IxI = √(x^2) < 2√(1 + x^2) ; mà IxI ≥ -x => p > 0 
Xét: p^2 = 4(1 + x)^2 + 4x√(1 + x^2) + x^2 = (1 + x^2) + 4x√(1 + x^2) + 4x^2 + 3 
= [√(1 + x^2) + 2x]^2 + 3 ≥ 3 => p^2 ≥ 3 => p ≥ √3 
=> S ≥ √3 
b/ Dấu đẳng thức xảy ra khi a^2 + b^2 = c^2 + d^2 và √(1 + x^2) + 2x = 0 => x = -1/√3 
Khi đó có: a^2 + b^2 = c^2 + d^2 và ac + bd = -1/√3 và ad - bc = 1 
Theo biến đổi ở đầu bài thì (a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2 = 1 + 1/3 = 4/3 
Do đó: a^2 + b^2 = c^2 + d^2 = 2/√3 
Ta có: (a + c)^2 + (b + d)^2 = a^2 + c^2 + b^2 + d^2 + 2ac + 2bd = 2. 2/√3 + 2.(-1/√3) = 2/√3 
vậy: (a + c)^2 + (b + d)^2 = 2/√3

Học chi cho lắm cx bằng nhau à

30 tháng 1 2017

tuong tự [Toán 11] Tính giá trị của biểu thức | HOCMAI Forum - Cộng đồng học sinh Việt Nam

20 tháng 12 2023

cứu