Tìm các số nguyên x và y (y khác 0) biết rằng x/5-1/y=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(\frac{x}{5}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-5}{5y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-5\right)=5y\)
\(\Rightarrow2xy-10-5y=0\)
\(\Rightarrow y\left(2x-5\right)=10\)
mà 10 = 2.5 = (-2).(-5) = 1.10 = (-1).(-10)
Lập bảng xét 8 trường hợp :
x | 10 | 1 | 2 | 5 | -2 | -5 | -1 | -10 |
2x - 5 | 7,5 | 3(tm) | 3,5 | 5(tm) | -1,5 | 0(tm) | 2(tm) | -2,5 |
y | 1 | 10 | 5 | 2 | -5 | -2 | -10 | -1 |
Vậy các cặp (x;y) thỏa mãn bài toán là : (3;10) ; (5;2) ; (0;-2) ; (2;-10)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
\(\frac{7}{x}=\frac{y}{1}\)
<=> \(7=xy\)
Lập bảng :
x | 1 | 7 | -1 | -7 |
y | 7 | 1 | -7 | -1 |
Vậy ta có các cặp (x;y) thỏa mãn : ( 1 ; 7 ) ; ( 7 ; 1 ) ; ( -1 ; -7 ) ; ( -1 ; -7 )
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
x/5-1/y=1/2
=>xy-5/5y=1/2(quy đồng nha)
=>2(xy-5)=5y(nhân chéo)
=>2xy-10=5y
=>2xy-5y=10
=>y(2x-5)=10
=>y,(2x-5)t thuộc Ư(10)={-1,1,-2,2,-5,5,-10,10}
Nên ta có bảng:
Vậy:có các cặp (x, y) là (2,-10),(3,10),(0,-2),(5,2)