K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

Đề sai bạn nhé. Phải là BD=2AD nhà. Nếu như đề trên thì nó là hình thang chứ ko phải hbh 

21 tháng 11 2019
Nhầm , đề là BC=2AD

loading...  loading...  loading...  loading...  

a: Xét tứ giác ABED có 

BE//AD

Do đó:ABED là hình thang

b: Xét tứ giác ABEF có 

AF//BE

AF=BE

Do đó: ABEF là hình bình hành

mà AB=AF

nên ABEF là hình thoi

SUy ra: EF=AF=AD/2

Xét ΔEAD có 

EF là đường trung tuyến

EF=AD/2

Do đó: ΔEAD vuông tại E

hay \(\widehat{AED}=90^0\)

19 tháng 11 2016

a ,

Ta có BE//AD => ABED là hình thang
xét tam giác CED có EC=DC và có góc C=60°
=>CED là tam giác đều
=>EDC=60°
ta có BDE=D-ECD (đây là ký hiệu góc)
=>BDE=60°
Mà ta biết góc A=60°
Hình thang ABED có 2 góc đáy bằng nhau => là hình thang cân
b ,

Ta có :

CE = BE

DF=FA

->EF là đường trung bình của hình bình hành ABCD .

-> AB // EF // CD mà EB // AF ( E , F thuộc AD và BC )

-> Tứ giác ABEF là hình bình hành .

-> EF = AB mà AD = BC = 2AB

-> AD = 2EF

Xét tam giác AED có : đường trung tuyến EF ứng với cạnh huyền AD và

EF = 1/2 AD nên tam giác AED là tam giác vuông tại E

-> Góc AED = 90 độ .

 

28 tháng 5 2017

bạn làm giúp mình câu này : tú giác ECDF là hình gì ? vì sao

20 tháng 10 2023

Sửa đề: BC=2AB

a: \(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)

mà BC=AD

nên BE=EC=AF=FD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

mà BE=BA(=1/2BC)

nên ABEF là hình thoi

b: Xét ΔIFA có

FB là đường trung tuyến

\(FB=\dfrac{IA}{2}\)

Do đó: ΔIFA vuông tại F

=>IF\(\perp\) AD
mà AD//BC

nên \(IF\perp BC\)

c: Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

=>BC cắt ID tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của ID

=>I,E,D thẳng hàng

31 tháng 10 2022

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

31 tháng 10 2022

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

13 tháng 3 2020

A B C D F E 60o 60o

a, Ta có :

EC // FD

\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)

=> ECDF là hình bình hành 

\(EF=AB=\frac{1}{2}BC\)

=> ECDF là hình thoi

b, \(\widehat{A} =60^o\)

\(\Rightarrow D=120^o\)

\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)

Mà BE // AD

==> BEDA là hình thang cân 

c, Xét tam giác AFE : AF = EF --- > góc AFE

BEFA là hình thoi 

==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)  

Mà EDA = 60o

=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)

                                                 \(=30^o+60^o+\widehat{EAD}\)

                                                 \(\Rightarrow\widehat{AED}=60^o\)    

29 tháng 10 2023

a:

\(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)
\(AB=CD=\dfrac{AD}{2}\)

Do đó: BE=EC=AF=FD=AB=CD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

Hình bình hành ABEF có BE=BA

nên ABEF là hình thoi

=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF và \(\widehat{BAF}=60^0\)

nên ΔABF đều

=>\(\widehat{AFB}=60^0\)

\(\widehat{BFD}+\widehat{AFB}=180^0\)(hai góc kề bù)

=>\(\widehat{BFD}+60^0=180^0\)

=>\(\widehat{BFD}=120^0=\widehat{CDF}\)

Xét tứ giác BFDC có FD//BC

nên BCDF là hình thang

Hình thang BCDF có \(\widehat{BFD}=\widehat{CDF}\)

nên BCDF là hình thang cân

c:

ΔABF đều

=>BF=AF

=>\(BF=\dfrac{AD}{2}\)

Xét ΔBAD có

BF là đường trung tuyến

\(BF=\dfrac{AD}{2}\)

Do đó: ΔBAD vuông tại B

=>AB\(\perp\)BD

AB=CD

AB=BM

Do đó: CD=BM

Xét tứ giác BMCD có

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Hình bình hành BMCD có \(\widehat{MBD}=90^0\)

nên BMCD là hình chữ nhật

=>BC cắt MD tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

=>M,E,D thẳng hàng