K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

I DON NO

17 tháng 9 2021

Vì \(AB\perp MN\) tại H nên H là trung điểm AB (dây vuông góc đường kính)

\(\Rightarrow AH=\dfrac{1}{2}AB=6\left(cm\right)\) 

MH vừa là đường cao vừa là trung tuyến nên \(\Delta MAB\) cân tại M

Do đó \(MA=MB=10\left(cm\right)\)

Ta có \(\widehat{MAN}=90^0\)(góc nt chắn nửa đường tròn) nên tam giác MAN vuông tại A

Áp dụng HTL tam giác 

\(\dfrac{1}{AH^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\\ \Rightarrow\dfrac{1}{36}=\dfrac{1}{AN^2}+\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{AN^2}=\dfrac{1}{36}-\dfrac{1}{100}=\dfrac{4}{225}\\ \Rightarrow4AN^2=225\Rightarrow AN^2=\dfrac{225}{4}\Rightarrow AN=\dfrac{15}{2} =7,5\left(cm\right)\)

\(MN=\sqrt{AN^2+AM^2}=\sqrt{10^2+7,5^2}=12,5\left(cm\right)\)

Vậy đường kính đường tròn \(\left(O\right)\) dài 12,5 cm

NH vừa là đường cao vừa là trung tuyến nên \(\Delta NAB\) cân tại N

OK vuông góc với MB nên K cũng là trung điểm MB

\(\Rightarrow AN=NB=7,5\left(cm\right)\)

\(\left\{{}\begin{matrix}NO=OM\left(=R\right)\\MK=KB\left(cm.trên\right)\end{matrix}\right.\Rightarrow OK\) là đtb tam giác MBN

\(\Rightarrow OK=\dfrac{1}{2}NB=\dfrac{1}{2}\cdot7,5=3,75\left(cm\right)\)

 

a: góc ACB=1/2*sđ cung AB=90 độ

Vì góc KHB+góc KCB=180 độ

=>BHKC nội tiếp

Xét ΔAHK vuông tại H và ΔACB vuôg tại C có

góc HAK chung

=>ΔAHK đồng dạng với ΔACB

=>AH/AC=AK/AB

=>AH*AB=AC*AK

b: Xét ΔBIE vuông tại I và ΔBMA vuông tại M có

góc IBE chung

=>ΔBIE đồng dạng với ΔBMA

=>BI/BM=BE/BA

=>BM*BE=BI*BA

Xét ΔAIE vuông tại I và ΔACB vuông tại C có

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AC*AE
=>BE*BM+AE*AC=AI*AB+BI*AB=AB^2 ko đổi

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH là cạnh chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)

⇒AM=AN(hai cạnh tương ứng)

c) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)

Xét ΔBMH và ΔCNH có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)

Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)

d) Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(định nghĩa tam giác cân)

\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

\(\widehat{AMN}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)

e)

*Tính AB

Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=BH^2+AH^2\)

hay \(AB^2=6^2+8^2=100\)

\(AB=\sqrt{100}=10cm\)

Vậy: AB=10cm

8 tháng 4 2020

Thank you ^-^

a: góc NAP=góc NBP=90 độ

=>PA vuông góc MN và NB vuông góc MB

Xét ΔMNP có

NB,PA là đường cao

NB cắt PA tại H

=>H là trực tâm

=>MH vuông góc NP tại I

Xét ΔHAN vuông tại A và ΔHBP vuông tại B có

góc AHN=góc BHP

=>ΔHAN đồng dạng với ΔHBP

b: góc HIP+góc HBP=180 độ

=>HIPB nội tiếp

c: góc BAH=góc IMP

góc IAH=góc BNP

mà góc IMP=góc BNP

nên góc BAH=góc IAH

=>AH là phân giác của góc BAI

góc ABH=góc NMI

góc IBH=góc APN

mà góc NMI=góc APN

nên góc ABH=góc IBH

=>BH là phân giác của góc ABI