Bài 1: Cho tam giác ABC vuông tại A (AB < AC). Từ A hạ đường thẳng vuông góc với BC tại h. Trên tia đối của tia AH lấy D sao cho HA=HD.
a) Chứng minh tam giác ABH= tam giác DBH
b) Chứng minh HAC^ = HBD^
c) Tính BDC^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó:ΔAHC=ΔDHC
Suy ra: AC=DC
hay ΔACD cân tại C
c: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABD cân tại B
Xét ΔBAC và ΔBDC có
BA=BD
AC=DC
BC chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
hayΔBDC vuông tại D
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
=>ΔABH=ΔKIH
b: ΔABH=ΔKIH
=>góc ABH=góc KIH
=>AB//IK
c: IK//AB
AB vuông góc AC
=>IK vuông góc AC
=>I,K,E thẳng hàng
d: Xét tứ giác ABKI có
H là trung điểm chung của AK và BI
AK vuông góc BI
=>ABKI là hình thoi
=>AB=AI=IK
=>IK=ID
=>góc IKD=góc IDK
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Suy ra: BH=CH
hay H là trung điểm của BC
b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có
HB=HC
HA=HD
Do đó: ΔABH=ΔDCH
c: Ta có: ΔABH=ΔDCH
nên AB=DC
mà AB=AC
nên DC=AC
hay ΔACD cân tại C
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)
a, xét tam giác ABH và tam giác DBH có : HB chung
góc AHB = góc DHB = 90 do ...
AH = HD (gt)
=> tam giác AHB = tam giác DHB (c-g-c)
b, tam giác AHB = tam giác DHB (Câu a )
=> góc DBH = gosc HBA (Đn) (1)
tam giác AHB vuông tại H do ...
=> góc CBA = 90 - góc HAB
góc CAH = 90 - góc HAB
=> góc CAH = góc HBA và (1)
=> góc CAH = góc HBD