K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

Bạn tự vẽ hình giúp mình nhé!

Xét tam giác AHC vuông tại H có:

HM là đường trung tuyến ứng với cạnh huyền AC

\(\Rightarrow HM=AM=MC=MN\)

\(\Rightarrow HN=AC\) (1)

Xét tam giác HMC và tam giác NMA có:

\(\left\{{}\begin{matrix}AM=MC\\\widehat{AMN}=\widehat{CMH}\left(đđ\right)\\HM=MN\end{matrix}\right.\)

\(\Rightarrow\Delta HMC=\Delta NMA\)

\(\Rightarrow\widehat{MHC}=\widehat{MNA}\)

Mà hai góc trên nằm ở vị trí so le

\(\Rightarrow\)AN//HC(2)

Chứng minh tương tự ta được AH//NC(3)

Từ (1),(2),(3) suy ra, tứ giác AHCN là hình chữ nhật

 

Xét ΔAHC có

I là trung điểm của AH

N là trung điểm của AC

DO đó: IN là đường trung bình của ΔAHC

Suy ra: \(IH=3cm\)

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

a: góc BDH=1/2*sđ cung BH=90 độ

=>HD vuông góc AB

góc HEC=1/2*sđ cung HC=90 độ

=>HE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: Xét ΔIDH và ΔIHE có

góc IHD=góc IEH

góc I chung

=>ΔIDH đồng dạng với ΔIHE

=>ID/IH=IH/IE

=>IH^2=ID*IE