Giải bất phương trình : \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x-3+\sqrt{x^2+2x-3}\right)\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
bài này mình chưa giải dc triệt để ở cái cuối
\(2x^3-4x^2+3x-1=2x^3\left(2-y\right)\sqrt{3-2y}\) \(\left(y\le\dfrac{3}{2}\right)\)
\(\Leftrightarrow4x^3-8x^2+6x-2=2x^3\left(4-2y\right)\sqrt{3-2y}\left(1\right)\)
\(đặt:\sqrt{3-2y}=a\ge0\Rightarrow a^2+1=4-2y\)
\(\left(1\right)\Leftrightarrow4x^3-8x^2+6x-2=2x^3.\left(a^2+1\right)a\)
\(\Leftrightarrow4x^3-8x^2+6x-2-2x^3\left(a^2+1\right)a\)
\(\Leftrightarrow-2\left(xa-x+1\right)\left[\left(xa\right)^2+x^2a+2x^2-xa-2x+1\right]=0\)
\(\Leftrightarrow x.a-x+1=0\Leftrightarrow x\left(a-1\right)=-1\Leftrightarrow x=\dfrac{-1}{a-1}\)
\(\left(\sqrt{x\sqrt{3-2y}-\sqrt{x}}\right) ^2=x\sqrt{3-2y}-\sqrt{x}\)
\(=\dfrac{-a}{a-1}-\sqrt{\dfrac{-1}{a-1}}\)
\(\left(\sqrt{x\sqrt{3-2y}+2}+\sqrt{x+1}\right)=\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\)
\(\Rightarrow\left(\dfrac{-a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\left(\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\right)-4=0\)
\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right).2\sqrt{\dfrac{a-2}{a-1}}=4\)
\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{\dfrac{a-2}{a-1}}=2\)
\(\Leftrightarrow\left(-1+\dfrac{-1}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{1-\dfrac{1}{a-1}}=2\)(3)
\(đặt:1-\dfrac{1}{a-1}=u\Rightarrow\sqrt{-\dfrac{1}{a-1}}=\sqrt{u-1}\)
\(\left(3\right)\Leftrightarrow\left(u-2-\sqrt{u-1}\right)\sqrt{u}=2\)
bình phương lên tính được u
\(\Rightarrow u=.....\Rightarrow a\Rightarrow y=...\Rightarrow x=....\)
Với \(x=0\) không phải nghiệm
Với \(x>0\) chia 2 vế cho pt đầu cho \(x^3\)
\(\Rightarrow2-\dfrac{4}{x}+\dfrac{3}{x^2}-\dfrac{1}{x^3}=2\left(2-y\right)\sqrt{3-2y}\)
\(\Leftrightarrow1-\dfrac{1}{x}+\left(1-\dfrac{1}{x}\right)^3=\sqrt{3-2y}+\sqrt{\left(3-2y\right)^3}\)
Xét hàm \(f\left(t\right)=t+t^3\Rightarrow f'\left(t\right)=1+3t^2>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow1-\dfrac{1}{x}=\sqrt{3-2y}\)
Thế vào pt dưới:
\(\left(\sqrt{x\left(1-\dfrac{1}{x}\right)-\sqrt{x}}\right)^2\left(\sqrt{x\left(1-\dfrac{1}{x}\right)+2}+\sqrt{x+1}\right)=4\)
\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\left(\sqrt{x+1}+\sqrt{x+1}\right)=4\)
\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\sqrt{x+1}=2\)
Phương trình này ko có nghiệm đẹp, chắc bạn ghi nhầm đề bài của pt dưới
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
Giải bất phương trình: \(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\right|\)
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
ĐKXĐ: \(x\ge1\)
Dễ dàng nhận ra \(\sqrt{x+3}+\sqrt{x-1}>0\) nên BPT tương đương:
\(x-3+\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{x+3}+\sqrt{x-1}\)
Đặt \(\sqrt{x+3}+\sqrt{x-1}=a>0\)
\(\Rightarrow a^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow x+\sqrt{\left(x-1\right)\left(x+3\right)}=\frac{a^2-2}{2}\)
BPT trở thành:
\(\frac{a^2-2}{2}-3\ge a\Leftrightarrow a^2-2a-8\ge0\Rightarrow a\ge4\) (do \(a>0\))
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}\ge4\)
\(\Leftrightarrow2x+2+2\sqrt{x^2+2x-3}\ge16\)
\(\Leftrightarrow\sqrt{x^2+2x-3}\ge7-x\)
- Nếu \(x>7\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT hiển nhiên đúng
- Nếu \(1\le x\le7\)
\(\Leftrightarrow x^2+2x-3\ge x^2-14x+49\)
\(\Leftrightarrow x\ge\frac{13}{4}\) \(\Rightarrow\frac{13}{4}\le x\le7\)
Vậy nghiệm của BPT là \(x\ge\frac{13}{4}\)
Cho mk hỏi \(\sqrt{x+3}+\sqrt{x-1}\) bn lấy ở đâu vậy ạ