\(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

7 tháng 4 2017

Lời giải

a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)

b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)

16 tháng 2 2016

lớp mấy

3 tháng 8 2019

\(6\sqrt{x^2-34x+64}=x^2-34x+48\)

\(\text{đ}at:x^2-34x+48=a\Rightarrow6\sqrt{a+16}=a\Leftrightarrow36a+576=a^2\Leftrightarrow a^2-36a-576=0;\Delta=\left(-36\right)^2-4.\left(-576\right).1=3600\Rightarrow\left\{{}\begin{matrix}a_1=24\\a_2=-96\end{matrix}\right.\)

\(+,a=-96\Rightarrow x^2-34x+48=-96\Leftrightarrow x^2-34x+144=0;\Delta=34^2-4.144=580\Rightarrow\left\{{}\begin{matrix}x_1=-34+2\sqrt{145}\\x_2=-34-2\sqrt{145}\end{matrix}\right.\)

\(+,a=24\Rightarrow x^2-34x+48=24\Leftrightarrow x^2-34x+24=0;\Delta=1156-96=1060\Rightarrow\left\{{}\begin{matrix}x_1=-34+2\sqrt{265}\\x_2=-34-2\sqrt{265}\end{matrix}\right.\)

6 tháng 5 2016

Điều kiện xác định :\(x\ne-1\)

Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)

\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)

                               \(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)

                               \(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)

                               \(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))

 

7 tháng 4 2016

Điều kiện : \(x\ge1\)

\(3\left(x^2-2\right)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}\left(\sqrt{x-1}+3\sqrt{x^2-1}\right)\) \(\Leftrightarrow6\left(x^2-2\right)+\frac{8\sqrt{2}}{\sqrt{x^2-x+1}}-2\sqrt{x^2-x}-6\sqrt{x}\sqrt{x^2-1}>0\)

\(\Leftrightarrow3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-x}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-x}+1}+x^2-x-5\right)>0\)

Xét hàm số \(f\left(t\right)=\frac{4\sqrt{2}}{\sqrt{t+1}}+t-5,\left(t\ge0\right)\)

Ta có \(f'\left(t\right)=1-\frac{2\sqrt{2}}{\left(t+1\right)\sqrt{t+1}}\)

\(f'\left(t\right)=0\Leftrightarrow t=1\)

Bảng xét dấu :

x0                            1                             +\(\infty\)
f'(x)  /           -               0                + 

Suy ra \(f\left(t\right)\ge f\left(1\right)\), với mọi \(t\in\left[0;+\infty\right]\)\(\Rightarrow\) \(f\left(t\right)\ge0\), với mọi \(t\in\left[0;+\infty\right]\). Dấu = xảy ra \(\Leftrightarrow t=1\)

Do \(x^2-x\ge0\) với mọi \(x\in\left[0;+\infty\right]\)\(\Rightarrow\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ge0\) với mọi \(x\in\left[0;+\infty\right]\), dấu = xảy ra khi \(x^2-x=1\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)

Khi đó \(3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-1}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-1}+1}+x^2-x-5\right)>0\)

\(\Leftrightarrow\begin{cases}\sqrt{x^2-1}-\sqrt{x}\ne0\\\sqrt{x^2-x}-1\ne0\\\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ne0\end{cases}\)  \(\Leftrightarrow x\ne\frac{1+\sqrt{5}}{2}\)

Tập nghiệm của bất phương trình đã cho là 

\(S=\left(1;+\infty\right)\backslash\left(\frac{1+\sqrt{5}}{2}\right)\)

 

 

 

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2