K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

vì \(n-1⋮n-1\)\(\Rightarrow2\left(n-1\right)⋮n-1\)\(\Rightarrow2n-2⋮n-1\)

\(\Leftrightarrow\left(2n+3\right)-\left(2n-2\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)mà \(x\in N\)

\(n-1\in\left\{1;5\right\}\)

ta có bảng:

n-115
n26

vậy \(x\in\left\{2;6\right\}\)

15 tháng 11 2019

Có:

2n+3=2(n-1)+5

Vì 2(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 là Ư(5)

=>Ư(5)={-1;1;-5;5}

NX:

+)n-1=-1=>n=0(tm)

+)n-1=1=>n=2(tm)

+)n-1=-5=>n=-4(loại)

+)n-1=5=>n=6(tm)

Vậy...

5 tháng 10 2017

Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)

Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3

=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6

12 tháng 7 2018

Ta có:

 n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)

Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3

=>  n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.

Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

20 tháng 6 2017

b chia 3 dư bao nhiêu vậy bn ?

20 tháng 6 2017

dư 2 nha bạn

22 tháng 5 2019

(n+1)(n+2)(n+3)....2n  ( 1 )

Dễ thấy ( 1 ) đúng với n = 2

giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k

Ta chứng minh BĐT đúng với n = k+1

\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1

Thật vậy, theo giả thiết quy nạp,ta có :

(k+1)(k+2)(k+3)...2k > 2k

\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k

\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1

\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1

Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 12 2016

a) Ta có: n + 3 = n - 1 + 1 + 3 = n - 1 + 4

Mà n - 1 chia hết cho n - 1

=> Để n - 1 + 4 chia hết cho n - 1 thì 4 phải chia hết cho n - 1

Mà Ư (4) = {1; 2; 4}

+) n - 1 = 1

=> n = 1 + 1 = 2

+) n - 1 = 2

=> n = 2 + 1 = 3

+) n - 1 = 4

=> n = 4 + 1 = 5

Vậy để n + 3 chia hết cho n - 1 thì n = {2; 3; 5}

b) Ta có: n + 6 = n - 4 + 4 + 6 = n - 4 + 10

Mà n - 4 chia hết cho n - 4

=> Để n - 4 + 10 chia hết cho n - 4 thì 10 phải chia hết cho n - 4

Mà Ư (10) = {1; 2; 5; 10}

+) n - 4 = 1

=> n = 1 + 4 = 5

+) n - 4 = 2

=> n = 2 + 4 = 6

+) n - 4 = 5

=> n = 4 + 5 = 9

+) n - 4 = 10

=> n = 4 + 10 = 14

Vậy để n + 6 chia hết cho n - 4 thì n = {5; 6; 9; 14}

c) Ta có: 4n + 3 = 4n - 2 + 2 + 3 = 4n - 2 + 5

Mà 4n - 2 chia hết cho 2n - 1

=> Để 4n - 2 + 5 chia hết cho 2n - 1 thì 5 phải chia hết cho 2n - 1

Mà Ư (5) = {1; 5}

+) 2n - 1 = 1

=> 2n = 1 + 1 = 2

=> n = 2 : 2 = 1

+) 2n - 1 = 5

=> 2n = 5 + 1 = 6

=> n = 6 : 2 = 3

Vậy để 4n + 3 chia hết cho 2n - 1 thì n = {1; 3}

d) Ta có: 2n + 12 = 2n - 4 + 4 + 12 = 2n - 4 + 16

Mà 2n - 4 chia hết cho n - 2

=> Để 2n - 4 + 16 chia hết cho n - 2 thì 16 phải chia hết cho n - 2

Mà Ư (16) = {1; 2; 4; 8; 16}

+) n - 2 = 1

=> n = 1 + 2 = 3

+) n - 2 = 2

=> n = 2 + 2 = 4

+) n - 2 = 4

=> n = 4 + 2 = 6

+) n - 2 = 8

=> n = 8 + 2 = 10

+) n - 2 = 16

=> n = 16 + 2 = 18

Vậy để 2n + 12 chia hết cho n - 2 thì n = {3; 4; 6; 10; 18}

 

6 tháng 12 2016

thanhs nah

10 tháng 12 2016

a) 2n-6+7 chia het n- 3

=> 7 chia het n-3

n-3={+1-+-7}

n={-4,2,4,10} loai -4 di

b) n^2+3 chia (n+1)

n^2+n-n-1+4 chia n+1

n+ 1={+-1,+-2,+-4}

n={-5,-3,-2,0,1,3} loai -5,-3,-2, di

n={013)

27 tháng 11 2016

a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3

=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }

=> n - 3 = { 1 ; 7 }

=> n = { 4 ; 11 }

b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1

=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }

=> n + 1 = { 1 ; 2 ; 4 }

=> n = { 0 ; 1 ; 3 }

27 tháng 11 2016

a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp

24 tháng 10 2018

\(a,n+6⋮n+3\)

\(\Rightarrow n+3+3⋮n+3\)

mà \(n+3⋮n+3\Rightarrow3⋮n+3\)

\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Với n + 3 = 1 => n = -2 

    n + 3 = -1 => n = -4

  n +3 = 3 = > n= 0

n+ 3 = -3 => n= -6 

\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)

b, \(2n+9⋮n+2\)

\(2.n+2+7⋮n+2\)

mà \(2\left(n+2\right)⋮n+2\)

\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

........ 

bn lm như trên 

24 tháng 10 2018

\(c,2n+7⋮n+1\)

\(\Rightarrow2n+1+6⋮n+1\)

mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)

........ như phần vừa nãy 

\(d,n+3⋮n-1\)

\(\Rightarrow n+4-1⋮n-1\)

\(\Rightarrow n-1+4\)

mà \(n-1⋮n-1\Rightarrow4⋮n-1\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

......