ko dùng máy tính so sánh A = 2006/2007+2007/2008+2008/2009+2009/2006 với 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.
Vậy ...
2006/2007<1
2007/2008<1
2008<2009<1
2009/2006>1
A=2006/2007+2007/2008+2008/2009+2009/2006\(\approx\)3+1=4
Ta có A= (1 -1/2007) +(1-1/2008)+(1-1/2009)+(1+3/2006)= 4-(1/2007+1/2008+1/2009-3/2006) <4
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).
\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).
Suy ra \(A>B\).
ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
A = \(1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)
A= \(4\)\(+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
Do 1/2007 < 1/2006 ; 1/2008<1/2006 ; 1/2009<1/2006=> 1/2007 + 1/2008 + 1/2009 < 1/2006 + 1/2006 + 1/2006
Mà 1/2006 + 1/2006 + 1/2006 = 3/2006
=> 3/2006 -( 1/2007 + 1/2008 + 1/2009) > 0
=> \(4+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)>4\)
=> A > 4
Ta có:\(\frac{2006}{2007}< 1\)
\(\frac{2007}{2008}< 1\)
\(\frac{2008}{2009}< 1\)
\(\frac{2009}{2006}>1\)\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)
Ta có:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2006
= 1 - 1/2007 + 1 - 1/2008 + 1 - 1/2009 + 1 + 3/2006
= (1 + 1 + 1 + 1) - (1/2007 + 1/2008 + 1/2009) + 3/2006
= 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006
Vì 1/2007 < 1/2006
1/2008 < 1/2006
1/2009 < 1/2006
=> 1/2007 + 1/2008 + 1/2009 < 3/2006
=> -(1/2007 + 1/2008 + 1/2009) + 3/2006 > 0
=> 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006 > 4 - 0 = 4
=> 2006/2007 + 2007/2008 + 2008/2009 + 2009/2006 > 4
Ta có:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2006
= 1 - 1/2007 + 1 - 1/2008 + 1 - 1/2009 + 1 + 3/2006
= (1 + 1 + 1 + 1) - (1/2007 + 1/2008 + 1/2009) + 3/2006
= 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006
Vì 1/2007 < 1/2006
1/2008 < 1/2006
1/2009 < 1/2006
=> 1/2007 + 1/2008 + 1/2009 < 3/2006
=> -(1/2007 + 1/2008 + 1/2009) + 3/2006 > 0
=> 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006 > 4 - 0 = 4
=> 2006/2007 + 2007/2008 + 2008/2009 + 2009/2006 > 4
Ta có : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
\(=\frac{2007-1}{2007}+\frac{2008-1}{2008}+\frac{2009-1}{2009}+\frac{2006+3}{2006}\)
\(=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)
\(< 4-\left(\frac{1}{2009}+\frac{1}{2009}+\frac{1}{2009}-\frac{3}{2009}\right)\)
\(=4\)
=> A < 4
Vậy A < 4