K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Ta có: \(x^4;y^4;z^4\)chia cho 4 dư 0 hoặc dư 1.

Mà \(x^4+y^4+z^4⋮4\)

\(\Rightarrow x^4;y^4;z^4⋮4\)

\(\Rightarrow x;y;z⋮2\)

Đề bài sai. \(x;y;z⋮2\)mới đúng

12 tháng 11 2019

Đề đúng đó bn. Câu này trong đề thi hsg tỉnh toán 9 hải phòng 2011-2012 mà :) thay các giá trị x,y,z = 4k đều thỏa mãn đề mà

19 tháng 12 2017

Áp dụng tính chất : 

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

♥,Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 81 

♥,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

♥,Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 81 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 81 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 81 

Tóm lại 3( x -y )(y -z )( z -x ) :/ 81 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 81

3 tháng 4 2018

- Nếu x,y,z khác số dư khi chia cho 3

+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3

=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3

=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )

+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3

=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3

=>(x − y)(y − z)(z − x)⋮27

=> x + y + z⋮27

12 tháng 7 2023

\(\left(x-y\right)^2+2xy⋮4\)

\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)

\(\Rightarrow x^2+y^2⋮4\)

\(\Rightarrow x^2⋮4;y^2⋮4\)

mà \(4⋮2\)

\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)

\(\Rightarrow dpcm\)

12 tháng 7 2023

 Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27

,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27

Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27

tích nha

2 tháng 4 2016

cau kia tra loi dung roi cau a

7 tháng 2 2016

Giải: Do (100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21(100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21
nên 100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21
Do đó cả chiều thuận và đảo đều thoả mãn. 

 

    1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
    Đọc tiếp

    1. Tìm những cặp số (x,y) thoả mãn pt: 
    a) x² - 4x +y - 6√(y) + 13 = 0 
    b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
    c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
    2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
    3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
    4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
    5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
    6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
    7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
    8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
    9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
    10. Viết số 100 thành tổng các số nguyên tố khác nhau 
    11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
    12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
    13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
    14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
    15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
    16. a) CM x² + y² = 7z² 
    b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

    0