tính diện tích của ba tam giác tạo bỏi 3 đường: y=-2x + 4 (d1), y=-1/3x + 4 (d2), y=1/2x + 2/3 (d3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b:
Bổ sung đề: A,B lần lượt là giao của (d1) với (d2) và (d3)
Tọa độ A là:
3x=1/3x và y=3x
=>x=0 và y=0
Tọa độ B là:
3x=-x+4 và y=3x
=>x=1 và y=3
a: Tọa độ A là:
\(\left\{{}\begin{matrix}x+2=-x-2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=-4\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2+2=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x+2=-2x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}-x-2=-2x+2\\y=-x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=-4-2=-6\end{matrix}\right.\)
Vậy: A(-2;0); B(0;2); C(4;-6)
b: \(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(-6-0\right)^2}=6\sqrt{2}\)
\(BC=\sqrt{\left(4-0\right)^2+\left(-6-2\right)^2}=\sqrt{4^2+8^2}=4\sqrt{5}\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=0\)
=>\(\widehat{BAC}=90^0\)
=>ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\sqrt{2}\cdot6\sqrt{2}=12\)
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: 4/3x + 1= x-1 ⇔ 1/3x = -2 ⇔ x = -6
thay x = -6 vào d2 ⇒ y = -6 -1 = -7
Vậy A(-6;-7)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -7 = m.(-6) + m+ 3
⇔ -7 = -6m + m + 3
⇔ -5m = -10
⇔ m=2
câu b
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: x - m + 1= 2x ⇔ x = -m +1
thay x = -m +1 vào d2 ⇒ y = 2.(-m +1) = -2m +2
Vậy A(-m +1;-2m +2)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -2m +2 = 2(2m-1).(-m +1) + 1/4
⇔ -2m +2 = -4m² +4m +2m-2 + 1/4
⇔ 4m² - 8m +15m/4=0
Giai pt bậc 2 được m=5/4 và m=3/4
Xét phương trình hoành độ giao điểm của (d1) và (d2)
\(2x+1=3x+4\) \(\Leftrightarrow x=-3\), thay vào (d1) ta được \(y=-5\)
\(\Rightarrow\) (d1) cắt (d2) tại \(\left(-3;-5\right)\)
Thay \(x=-3\) và \(y=-5\) vào (d3) ta thấy \(-3-2=y=-5\)
\(\Rightarrow\) 3 đường thẳng luôn đồng quy tại điểm \(\left(-3;-5\right)\)