\(\sqrt{x^2+1}\) = x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow t^2-2t+1=16\\ \Leftrightarrow\left(t-1\right)^2=4^2\\ \Leftrightarrow t-1=4\\ \Leftrightarrow t=4+1=5\left(tm\right)\)
\(\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=5^2=25\\ \Leftrightarrow x=25+1=26\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 26.
2 ĐK: \(3\le x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=0\\\sqrt{x-3}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Từ điều kiện và bài giải ta kết luận PT vô nghiệm.
3 ĐK: \(x\ge4\)
\(\Leftrightarrow\sqrt{x-4}=7-2=5\\ \Leftrightarrow x-4=5^2=25\\ \Leftrightarrow x=25+4=29\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 29.
4
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-\sqrt{x-2\sqrt{x-1}}=0\\ \Leftrightarrow t^2+1-\sqrt{t^2-2t+1}=0\\ \Leftrightarrow t^2+1-\sqrt{\left(t-1\right)^2}=0\\ \Leftrightarrow t^2+1-\left|t-1\right|=0\left(1\right)\)
Trường hợp 1:
Với \(0\le t< 1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(1-t\right)=0\\ \Leftrightarrow t^2+t=0\\ \Leftrightarrow t\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-1}=0\Rightarrow x=1\left(nhận\right)\\t=-1\left(loại\right)\end{matrix}\right.\)
Trường hợp 2:
Với \(t\ge1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(t-1\right)=0\\ \Leftrightarrow t^2-t+2=0\)
\(\Delta=\left(-1\right)^2-4.2=-7< 0\)
=> Loại trường hợp 2.
Vậy PT có nghiệm duy nhất x = 1.
5
ĐK: \(x\ge2\)
Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)
Khi đó:
\(\sqrt{x-2}-\sqrt{x^2-2x}=0\\ \Leftrightarrow\sqrt{x-2}-\sqrt{x}.\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{t^2+2-2}-\sqrt{t^2+2}.\sqrt{t^2+2-2}=0\\ \Leftrightarrow\sqrt{t^2}-\sqrt{t^2+2}.\sqrt{t^2}=0\\ \Leftrightarrow t-\sqrt{t^2+2}.t=0\\ \Leftrightarrow t\left(1-\sqrt{t^2+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-2}=0\Rightarrow x=2\left(tm\right)\\\sqrt{t^2+2}=1\Rightarrow t^2+2=1\Rightarrow t^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất x = 2.
6 Không có ĐK vì đưa về tổng bình lên luôn \(\ge0\)
\(\Leftrightarrow\sqrt{\sqrt{2}^2-2.\sqrt{2}.\sqrt{1}+\sqrt{1}^2}-\sqrt{x^2+2x.\sqrt{2}+\sqrt{2}^2}=0\\ \Leftrightarrow\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}-\sqrt{\left(x+\sqrt{2}\right)^2}=0\\ \Leftrightarrow\left|\sqrt{2}-\sqrt{1}\right|-\left|x+\sqrt{2}\right|=0\\ \Leftrightarrow\sqrt{2}-1-\left|x+\sqrt{2}\right|=0\)
Trường hợp 1:
Với \(x\ge-\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1-\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1-x-\sqrt{2}=0\\ \Leftrightarrow-1-x=0\\ \Leftrightarrow x=-1\left(tm\right)\)
Với \(x< -\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1--\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1+x+\sqrt{2}=0\\ \Leftrightarrow2\sqrt{2}+1+x=0\\ \Leftrightarrow x=-1-2\sqrt{2}\left(tm\right)\)
Vậy phương trình có 2 nghiệm \(x=-1\) hoặc \(x=-1-2\sqrt{2}\)
\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)
\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)
1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)
2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
c) \(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}=5\)
\(\Leftrightarrow\left(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}\right)^2=25\left(1\right)\left(đkxđ:0\le x\le25\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số dương \(\left(1;\sqrt[]{8+\sqrt[]{x}}\right);\left(1;\sqrt{5-\sqrt[]{x}}\right)\)
\(\left(1.\sqrt[]{8+\sqrt[]{x}}+1.\sqrt{5-\sqrt[]{x}}\right)^2\le\left(1^2+1^2\right)\left(8+\sqrt[]{x}+5-\sqrt[]{x}\right)=26\)
\(\left(1\right)\Leftrightarrow26=25\left(vô.lý\right)\)
Vậy phương trình đã cho vô nghiệm
b) \(\sqrt[]{1+4x}+2\sqrt[]{2-x}+2\sqrt[]{\left(1+4x\right)\left(2-x\right)}=3\) \(\left(đkxđ:-\dfrac{1}{4}\le x\le2\right)\)
\(\)\(\Leftrightarrow\sqrt[]{1+4x}+2\sqrt[]{2-x}=3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\)
\(\Leftrightarrow\left(\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2=\left[3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\right]^2\left(1\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki :
\(\left(1.\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2\le\left(1^2+2^2\right)\left(1+4x+2-x\right)=5\left(3x+3\right)\)
Áp dụng Bất đẳng thức Cauchy :
\(2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\le1+4x+2-x=3x+3\)
Dấu "=" xảy ra khi và chỉ khi
\(1+4x=2-x\)
\(\Leftrightarrow x=\dfrac{1}{5}\left(thỏa.đk\right)\)
\(pt\left(1\right)\Leftrightarrow5\left(4x+3\right)=4x+3\)
\(\Leftrightarrow4\left(4x+3\right)=0\)
\(\Leftrightarrow x=-\dfrac{3}{4}\left(k.thỏa.x=\dfrac{1}{5}.vô.lý\right)\)
Vậy phương trình đã cho vô nghiệm
\(\sqrt{x^2+1}=x+2\Rightarrow x^2+1=\left(x+2\right)^2=x^2+4x+4\)
\(\Rightarrow4x+3=0\Rightarrow4x=-3\Rightarrow x=-\frac{3}{4}\)
\(\sqrt{x^2+1}=x+2\)
\(\Leftrightarrow x^2+1=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+1=x^2+4x+4\)
\(\Leftrightarrow x^2+1-x^2-4x-4=0\)
\(\Leftrightarrow-4x-3=0\)
\(\Leftrightarrow-4x=3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy \(x=\frac{-3}{4}\)