Tìm x,y thuộc Z thỏa mãn \(x^3-y^3=1993\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
2y+3=x2
Với y=0 suy ra 20+3=x2 suy ra 4 = x2
suy ra x=2 ( vì x thuộc N)
Với y>0 suy ra VP = 2y+3 luôn là số lẻ
nên 2y+3 khác x2
vậy y=0,x=2
\(\left(x-3\right)\left(y+1\right)=7\)
\(\Rightarrow x-3;y+1\) là Ước của 7
Mà \(Ư\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng :
x-3 | 1 | 7 | -1 | -7 |
y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x,y\right)\in\left\{\left(4;6\right),\left(10;0\right),\left(2;-8\right),\left(-4;-2\right)\right\}\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)=1993\)
Phương trình ước số cơ bản (còn rất đơn giản vì 1993 là số nguyên tố nên có đúng 2 ước)
cảm ơn