K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)

Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)

\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)

Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)

Vậy GTNN của A là 1.

\(B=\frac{-8}{3x^2+1}\)

Cách 1:

\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.

Cách 2:

\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)

+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)

+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)

\(\Rightarrow-8\le B<0\text{ (do }B\ne0\text{)}\)

=> B không có GTLN.

17 tháng 8 2016

a) Đặt \(t=\frac{1}{x}\) , ta có : \(A=t^2-4t+5=\left(t^2-4t+4\right)+1=\left(t-2\right)^2+1\ge1\)

=> Min A = 1 <=> t = 2 <=> x = 1/2

b) Đặt \(z=\frac{1}{y}\) , ta có ; \(B=-9z^2-18z+19=-9\left(z^2+2z+1\right)+28=-9\left(z+1\right)^2+28\le28\)

=> Max B = 28 <=> z = -1 <=> y = -1

8 tháng 3 2016

câu 1 : 0 số cặp x y

câu 2 : ko có giá trị x thỏa mãn

câu 3 : GTLN A=2013

câu 4 : AB=2cm

câu 5: x+y=16

k cho mik nha bạn