Phân tích và cho dạng tổng quát của
\(\left(a+b\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng AB đi qua điểm \(A\left( {{x_1};{y_1}} \right)\) có vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {{x_2} - {x_1};{y_2} - {y_1}} \right)\)
Do đó, AB có phương trình tham số là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\end{array} \right.\)
Chọn \(\overrightarrow {{n_{AB}}} = \left( {{y_2} - {y_1}; - \left( {{x_2} - {x_1}} \right)} \right)\), suy ra AB có phương trình tổng quát là:
\(\left( {{y_2} - {y_1}} \right)\left( {x - {x_1}} \right) - \left( {{x_2} - {x_1}} \right)\left( {y - {y_1}} \right) = 0\).
a) Ta có = (2; -5). Gọi M(x; y) là 1 điểm nằm trên đường thẳng AB thì AM = (x - 1; y - 4). Ba điểm A, B, M thẳng hàng nên hai vec tơ và cùng phương, cho ta:
= <=> 5x + 2y -13 = 0
Đó chính là phương trình đường thẳng AB.
Tương tự ta có phương trình đường thẳng BC: x - y -4 = 0
phương trình đường thẳng CA: 2x + 5y -22 = 0
b) Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) => ⊥ nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x - 1) + 3(y -4) = 0
3x + 3y - 15 = 0
=> x + y - 5 = 0
Gọi M là trung điểm BC ta có M \(\left(\dfrac{9}{2};\dfrac{1}{2}\right)\)
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y - 5 = 0
a, Số hạng tổng quát của cấp số cộng \(\left(a_n\right)\) là:
\(a_n=a_1+\left(n-1\right)d=5+\left(n-1\right)\left(-5\right)=5-5n+5=10-5n\)
b, Giả sử cấp số cộng \(\left(b_n\right)\) có công sai d, ta có:
\(b_{10}=b_1+\left(10-1\right)d\\ \Leftrightarrow20=2+9d\\ \Leftrightarrow9d=18\\ \Leftrightarrow d=2\)
Vậy số hạng tổng quát của cấp số cộng \(\left(b_n\right)\) là:
\(b_n=b_1+\left(n-1\right)d=2+\left(n-1\right)\cdot2=2+2n-2=2n\)
Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)
Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).
a.
Đường thẳng có hệ số góc 3 nên nhận (3;-1) là 1 vtpt
\(\Rightarrow3\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow3x-y-5=0\)
b.
Đường thẳng có 1 vtcp là (2;-5) nên nhận (5;2) là 1 vtpt
Phương trình: \(5\left(x+5\right)+2\left(y-2\right)=0\Leftrightarrow5x+2y+21=0\)
c.
Đường thẳng vuông góc \(\Delta\) nên nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình: \(4x-3y=0\)
d.
Đường thẳng hợp với 2 trục tọa độ 1 tam giác cân nên có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\) Nhận (1;1) hoặc (1;-1) là vtpt
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-4\right)+1\left(y-5\right)=0\\1\left(x-4\right)-1\left(y-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y-9=0\\x-y+1=0\end{matrix}\right.\)
\(\left(a+b\right)^0=1\)
\(\left(a+b\right)^1=a+b\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
Tổng quát:
\(\left(a+b\right)^n=C_0a^n+C_1a^{n-1}b+...+C_nb^n\)
Trong đó : C0, C1, ..., Cn là các hệ số trong tam giác cân Paxcan:
(a + b)^0 1 (a + b)^1 1 1 (a + b)^2 1 2 1 (a + b)^3 1 3 3 1 (a + b)^4 1 4 6 4 1 (a + b)^5 1 5 10 10 5 1 (a + b)^6 1 6 15 20 15 6 1 ........... ...........
Chúc bn học tốt <3
Mk sửa đề chỗ thừa số cuối nhé, có lẽ bn chép sai đề
\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\frac{3}{4}.\frac{8}{9}...\frac{n^2-1}{n^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{\left(n-1\right).\left(n+1\right)}{n.n}\)
\(=\frac{1.2...\left(n-1\right)}{2.3...n}.\frac{3.4...\left(n+1\right)}{2.3...n}\)
\(=\frac{1}{n}.\frac{n+1}{2}=\frac{n+1}{2n}\)
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)\(b^5\)
Sorry, mk nhầm
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+\)\(5ab^4+b^5\)